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Abstract

The present paper deals with the learnability of indexed families of uniformly recursive lan-

guages from positive data under various postulates of naturalness. In particular, we consider

set-driven and rearrangement-independent learners, i.e., learning devices whose output exclu-

sively depends on the range and on the range and length of their input, respectively. The

impact of set-drivenness and rearrangement-independence on the behavior of learners to their

learning power is studied in dependence on the hypothesis space the learners may use. Further-

more, we consider the in
uence of set-drivenness and rearrangement-independence for learning

devices that realize the subset principle to di�erent extents. Thereby we distinguish between

strong-monotonic, monotonic and weak-monotonic or conservative learning.

The results obtained are twofold. First, rearrangement-independent learning does not con-

stitute a restriction except the case of monotonic learning. Second, we prove that for all but

one of the considered learning models set-drivenness is a severe restriction. However, set-driven

conservative learning is exactly as powerful as unrestricted conservative learning provided the

hypothesis space is appropriately chosen. These results considerably extend previous work done

in the �eld (cf. e.g. Sch�afer (1984) and Fulk (1990)).

1. Introduction

Language acquisition is one of the main topics in cognitive science, epistemology, linguistic and

psycholinguistic theory as well as of machine learning and algorithmic learning theory. All these

disciplines share the common goal to gain a better understanding of what learning really is. This

goal is of special interest to computer science if a learning computer should not remain a �ction.

Formal language learning may be characterized as the study of systems that map evidence on a

language into hypotheses about it. Of special interest is the investigation of scenarios in which the

�
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sequence of hypotheses stabilizes to an accurate and �nite description (a grammar) of the target

language. Clearly, then some form of learning must have taken place. In his pioneering paper, Gold

(1967) gave precise de�nitions of the concepts \evidence," \stabilization," and \accuracy" resulting

in the model of learning in the limit. During the last decades, Gold-style formal language learning

has attracted a lot of attention by computer scientists (cf. e.g. Osherson, Stob and Weinstein (1986)

and the references therein). Most of the work done in the �eld has been aimed at two goals: the

characterization of those collections of languages that can be learned, and to study the impact of

several postulates on the behavior of learners to their learning power.

In this paper we aim to investigate the learning capabilities of learners that ful�ll simultaneously

various combinations of desirable properties. For the purpose of motivation and discussion of our

research next to we introduce some notations.

A text of a language L is an in�nite sequence of strings that eventually contains all strings of L.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM), takes as input

initial segments of a text, and outputs, from time to time, a hypothesis about the target language.

The set G of all admissible hypothesis is called hypothesis space. Furthermore, the sequence of

hypotheses has to converge to a hypothesis correctly describing the language to be learned, i.e.,

after some point, the IIM stabilizes to an accurate hypothesis. If there is an IIM that learns a

language L from all texts for it, then L is said to be learnable in the limit with respect to the

hypothesis space G.

A �rst question directly arising when dealing with learning in the limit is whether or not the

order of information presentation does really in
uence the capabilities of IIMs. An IIM is said

to be set-driven, if its output does only depend on the range of its input. Surprisingly enough,

Sch�afer (1984) and Fulk (1990) proved that set-driven IIMs are less powerful than unrestricted

ones. Intuitively, the weakness of set-driven IIMs is caused by the di�culties to handle both, �nite

and in�nite languages. A natural weakening of set-drivenness is rearrangement-independence. An

IIM is called rearrangement-independent if its output does only depend on the range and length

of its input. As it turned out, any collection of languages that can be learned in the limit may

also be learned by a rearrangement-independent IIM (cf. Sch�afer (1984), Fulk (1990)). However,

the weakness of set-driven IIMs has been proved in a setting allowing self-referential arguments.

This might lead to the impression that this result is far beyond any practical relevance, since

self-referential arguments are exclusively applicable in settings where the membership problem for

languages is undecidable in general.

Therefore, we study the power of set-driven IIMs in a more realistic setting with respect to

potential applications, i.e., we deal exclusively with indexed families of non-empty and uniformly

recursive languages. A famous example for an indexed family is the collection of all pattern lan-

guages (cf. Angluin (1980a)). Although this indexed families contains �nite and in�nite languages,

Lange and Wiehagen (1991) succeeded in designing a set-driven IIM learning it. Consequently, it

is only natural to ask whether or not any learnable indexed family may be learned by a set-driven

IIM, too.

A major problem, one has to deal with when learning from text, is to avoid or to detect over-

generalization (also called the subset problem), i.e., hypotheses that describe proper supersets of

the target language. The impact of this problem results simply from the fact that a text cannot

supply counterexamples to such hypotheses. IIMs that strictly avoid overgeneralized hypotheses

are called conservative (cf. De�nition 6). As it turns out, neither Sch�afer's (1984) nor Fulk's (1990)

transformation of an arbitrary IIM into a rearrangement-independent one preserves conservative-
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ness. Therefore, we study the problem whether or not rearrangement-independence is a severe

restriction for conservative learners. However, this problem has its special peculiarities. Namely,

when dealing with conservative learning, the choice of the hypothesis space does seriously in
u-

ence the learnability of indexed families (cf. Lange and Zeugmann (1993b)). Hence, we have to

distinguish between exact learning, class preserving inference, and class comprising learning. If an

indexed family L can be learned with respect to the hypothesis space L, then L is said to be exactly

learnable. Furthermore, L is learnable by a class preserving learning algorithm M , if there is a

hypothesis space G = (G

j

)

j2IN

such that any G

j

describes a language from L and M learns L with

respect to G. That means, if one learns class preservingly, then one has the freedom to change the

enumeration as well as the description of the languages from L. Finally, if any hypothesis space

G = (G

j

)

j2IN

comprising the range of L may be taken by the learning algorithm, then we call it

class comprising. In this setting one has to freedom to change the enumeration, the description and

to add elements G

k

not describing any language >from L to the hypothesis space. However, since

membership in L is uniformly decidable, we restrict ourselves to consider exclusively hypothesis

spaces having a uniformly decidable membership problem.

Several authors proposed the so-called subset principle to solve the problem of avoiding overgen-

eralization (cf. e.g. Berwick (1985), Wexler (1992)). Informally, the subset principle requires the

learner to hypothesize the \least" language from the hypothesis space with respect to set inclusion

that �ts with the data the IIM has read so far. Therefore, we present some formalizations of learning

realizing the subset principle to di�erent extents. First, we require the learning algorithm to pro-

duce a sequence of hypotheses describing an augmenting chain of languages, i.e., L(G

j

) � L(G

k

), if

k is hypothesized on an extension of the text segment that led to j (cf. De�nition 5, (A)). We call

learners behaving thus strong-monotonic. Weakening the latter demand leads to weak-monotonic

learners that are required to behave strong-monotonically as long as they do not receive data

contradicting its actual hypothesis. If they receive strings that provably misclassify their actual

hypothesis, then weak-monotonic learners are allowed to output any hypothesis (cf. De�nition 5,

(C)). Third, we re�ne strong-monotonic learning in that we only require L(G

j

) \ L � L(G

k

) \ L.

Now, \least" language is interpreted with respect to the intersection with L. This learning model

is called monotonic inference (cf. De�nition 5, (B)). Strong-monotonic and weak-monotonic learn-

ing has been introduced by Jantke (1991) and monotonic learning goes back to Wiehagen (1991).

Subsequently, we have studied their learning capabilities in the setting of learning indexed families

(cf. Lange and Zeugmann (1993a)). Again, the power of all the monotonic learning models heavily

depends on the choice of the hypothesis space (cf. Lange and Zeugmann (1993b).

In the sequel we study the impact of set-drivenness and rearrangement-independence on all the

learning models described above in dependence on the hypothesis space. The results obtained prove

that rearrangement-independent learning does not constitute a restriction except in case one learns

monotonically. These results have been achieved by non-trivial applications of the characterizations

of all types of monotonic learning in terms of �nite tell-tales. Moreover, we show that set-drivenness

cannot be achieved in general. However, class comprising weak-monotonic learning is exactly as

powerful than class comprising set-driven weak-monotonic inference. We regard this result as a

particular answer to the question how a \natural" learning algorithm may be designed.

2. Preliminaries

By IN = f0; 1; 2; :::g we denote the set of all natural numbers. We set IN

+

= IN n f0g. Let
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'

0

; '

1

; '

2

; ::: denote any �xed programming system of all (and only all) partial recursive functions

over IN, and let �

0

; �

1

; �

2

; ::: be any associated complexity measure (cf. Machtey and Young, 1978).

Then '

k

is the partial recursive function computed by program k in the programming system.

Furthermore, let k; x 2 IN. If '

k

(x) is de�ned (abbr. '

k

(x) #) then we also say that '

k

(x)

converges; otherwise, '

k

(x) diverges (abbr. '

k

(x) ").

By h:; :i : IN� IN! IN we denote Cantor's pairing function. Moreover, we use h:; :; :i : IN� IN�

IN! IN to denote the following encoding: hx; y; zi =

df

hx; hy; zii for all x; y; z 2 IN.

In the sequel we assume familiarity with formal language theory (cf. Hopcroft and Ullman

(1969)). By � we denote any �xed �nite alphabet of symbols. Let �

�

be the free monoid over

�. Any subset L � �

�

is called a language. By co�L we denote the complement of L. Let L

be a language and t = s

0

; s

1

; s

2

; ::: an in�nite sequence of strings from �

�

such that range(t) =

fs

k

k 2 INg = L. Then t is said to be a text for L or, synonymously, a positive presentation. Let

L be a language. By text(L) we denote the set of all positive presentations of L. Moreover, let t

be a text and let x be a number. Then, t

x

denotes the initial segment of t of length x + 1, and

t

+

x

=

df

fs

k

k � xg.

Next, we introduce the notion of canonical text that turned out to be very helpful in proving

several theorems. Let L be any non-empty recursive language, and let s

0

; s

1

; s

2

; ::: be the lexico-

graphically ordered text of �

�

. The canonical text of L is obtained as follows. Test sequentially

whether s

z

2 L for z = 0; 1; 2; ::: until the �rst z is found such that s

z

2 L. Since L 6= ; there must

be at least one z ful�lling the test. Set t

0

= s

z

. We proceed inductively. For all x 2 IN we de�ne:

t

x+1

=

8

<

:

t

x

; s

z+x+1

; if s

z+x+1

2 L;

t

x

; s; otherwise; where s is the last string in t

x

:

In the sequel we deal with the learnability of indexed families of uniformly recursive languages

de�ned as follows (cf. Angluin, 1980b). A sequence L

0

; L

1

; L

2

; ::: is said to be an indexed family L

of uniformly recursive languages provided all L

j

are non-empty and there is a recursive function f

such that for all numbers j and all strings s 2 �

�

we have

f(j; s) =

(

1; if s 2 L

j

;

0; otherwise:

In all what follows we refer to indexed families of uniformly recursive languages as indexed

families for short. Moreover, we often denote an indexed family and its range by the same symbol

L. The meaning will be clear from the context.

As in Gold (1967) we de�ne an inductive inference machine (abbr. IIM) to be an algorithmic

device which works as follows: The IIM takes as its input larger and larger initial segments of a

text t and it either requests the next input string, or it �rst outputs a hypothesis, i.e., a number

encoding a certain computer program, and then it requests the next input string.

At this point we specify the semantics of the hypotheses an IIM outputs. For that purpose we

have to clarify what hypothesis spaces we choose. We require the inductive inference machines to

output indices of grammars, since this learning goal �ts well with the intuitive idea of language

learning. Furthermore, since we exclusively deal with indexed families L = (L

j

)

j2IN

we always take

as space of hypotheses an enumerable family of grammars G

0

; G

1

; G

2

; ::: over the terminal alphabet
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� satisfying L � fL(G

j

) j 2 INg. Moreover, we require that membership in L(G

j

) is uniformly

decidable for all j 2 IN and all strings s 2 �

�

. The numbers j that the IIM outputs are then

interpreted as L(G

j

). Moreover, for notational convenience we use L(G) to denote fL(G

j

) j 2 INg

for every hypothesis space G = (G

j

)

j2IN

.

A sequence (j

x

)

x2IN

of numbers is said to be convergent in the limit i� there is a number j such

that j

x

= j for almost all numbers x. Now we de�ne some concepts of learning. We start with

learning in the limit.

De�nition 1. (Gold, 1967) Let L be an indexed family of languages, L 2 L; and let G =

(G

j

)

j2IN

be a space of hypotheses. An IIM M LIM{identi�es L from a text t with respect to G

i� it almost always outputs a hypothesis and the sequence (M(t

x

))

x2IN

converges in the limit to a

number j such that L = L(G

j

).

Furthermore, M LIM{identi�es L i� M LIM{identi�es L from every text t 2 text(L). We

set:

LIM(M) = fL 2 L M LIM{identi�es Lg.

Finally, let LIM denote the collection of all indexed families L for which there is an IIM M

such that L � LIM(M).

Suppose, an IIM identi�es some language L. That means, after having seen only �nitely many

data of L the IIM reached its (unknown) point of convergence and it computed a correct and �nite

description of a generator for the target language. Hence, some form of learning must have taken

place. Therefore, we use the terms infer and learn as synonyms for identify.

Moreover, an IIM is required to learn the target language from every text for it. This might

lead to the impression that an IIM mainly extracts the range of the information fed to it, thereby

neglecting the length and order of the data sequence it reads. IIMs really behaving thus are called

set-driven. More precisely, we de�ne:

De�nition 2. (Wexler and Culicover, Sec. 2.2, (1980)) An IIM is said to be set-driven

i� its output depends only on the range of its input; that is, i� M(t

x

) =M(

^

t

y

) for all x; y 2 IN, all

texts t;

^

t provided t

+

x

=

^

t

+

y

.

Sch�afer (1984) as well as Fulk (1990), later, and independently proved that set-driven IIMs are

less powerful than unrestricted ones. Fulk (1990) interpreted the weakening in the learning power

of set-driven IIMs by the need of IIMs for time to \re
ect" on the input. However, this time cannot

be bounded by any a priorily �xed computable function depending exclusively on the size of the

range of the input, since otherwise set-drivenness would not restrict the learning power. Indeed,

Osherson, Stob and Weinstein (1986) proved that any non-recursive IIM M may be replaced by a

non-recursive set-driven IIM

^

M learning at least as much as M does. With the next de�nition we

consider a natural weakening of De�nition 2.

De�nition 3. Sch�afer-Richter (1984), Osherson et al. (1986)) An IIM is said to be

rearrangement-independent i� its output depends only on the range and on the length of its input;

that is, i� M(t

x

) =M(

^

t

x

) for all x 2 IN, all texts t;

^

t provided t

+

x

=

^

t

+

x

.

We make the following convention. For all the learning models in this paper we use the pre�x

s-, and r- to denote the learning model restricted to set-driven and rearrangement-independent

IIMs, respectively. For example, s�LIM denotes the collection of all indexed families that are

LIM{inferable by some set-driven IIM. Next we formalize the other inference models that we have

mentioned in the introduction.
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De�nition 4. (Gold, 1967) Let L be an indexed family of languages, L 2 L and let G =

(G

j

)

j2IN

be a space of hypotheses. An IIM M FIN{identi�es L from text t with respect to G i� it

outputs only a single and correct hypothesis j, i.e., L = L(G

j

), and stops.

Furthermore, M FIN{identi�es L, i� M FIN{identi�es L from every t 2 text(L). We set:

FIN(M) = fL 2 L M FIN{identi�es Lg and de�ne the resulting learning type FIN to be the

collection of all �nitely inferable indexed families.

Consequently, every hypothesis produced by a �nitely working IIM has to be a correct guess.

The next de�nition formalizes the di�erent notions of monotonicity.

De�nition 5. (Jantke (1991), Wiehagen (1991)) Let L be an indexed family of languages,

L 2 L and let G = (G

j

)

j2IN

be a space of hypotheses. An IIM M is said to identify a language L

from text

(A) strong-monotonically

(B) monotonically

(C) weak-monotonically

i�

M LIM{identi�es L and for any text t 2 text(L) as well as for any two consecutive hypotheses j

x

,

j

x+k

which M has produced when fed t

x

and t

x+k

for some k � 1; k 2 N , the following conditions

are satis�ed:

(A) L(G

j

x

) � L(G

j

x+k

)

(B) L(G

j

x

) \ L � L(G

j

x+k

) \ L

(C) if t

x+k

� L(G

j

x

) then L(G

j

x

) � L(G

j

x+k

).

By SMON; MON , and WMON , we denote the family of all sets L of indexed families for

which there is an IIM inferring it strong-monotonically, monotonically, and weak-monotonically,

respectively.

De�nition 6. (Angluin, 1980b) Let L be an indexed family, L 2 L, and let G = (G

j

)

j2IN

be

a space of hypotheses. An IIM M CONSERVATIVE{identi�es L from text with respect to G i� for

every text t the following conditions are satis�ed:

(1) L 2 LIM(M) w.r.t. G,

(2) if M on input t

x

makes the guess j

x

and then outputs the hypothesis j

x+k

6= j

x

at some

subsequent step, then t

+

x+k

6� L(G

j

x

).

CONSERVATIVE(M) as well as the collections of sets CONSERVATIVE are de�ned in an

analogous manner as above. Note that WMON = CONSERVATIVE (cf. Lange and Zeugmann

(1993a)). Additionally, every conservatively working IIM satis�es the monotonicity constraints a

weak-monotonically working IIM has to ful�ll.

We conclude this subsection with the following convention. For any model of inference de�ned

above, the pre�x E denotes the requirement to learn an indexed family L with respect to the
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hypothesis space L (exact learning). Furthermore, class comprising inference is denoted by the

pre�x C, e.g. CLIM denotes the set of all indexed families L inferable with respect to some

hypothesis space G = (G

j

)

j2IN

such that L � fL(G

j

) j 2 INg. If no pre�x is used, then class

preserving learning is meant, i.e., inference with respect to a hypothesis space G = (G

j

)

j2IN

such

that range(L) = fL(G

j

) j 2 INg. For example, r�MON denotes the collection of all indexed

families L that may be monotonically identi�ed by a rearrangement-independent IIM with respect

to some class preserving hypothesis space.

3. Learning with Set-driven IIMs.

Theorem 1. EFIN = FIN = CFIN = s�EFIN

Proof. EFIN = FIN = CFIN is due to Lange and Zeugmann (1993b). It remains to show

that EFIN � s�EFIN .

Let L 2 EFIN . From the characterization theorem for �nite learning (cf. Lange and Zeugmann,

1992) it follows that there exists a recursively generable family (T

j

)

j2IN

of �nite non-empty sets

such that

(1) For all j 2 IN, T

j

� L

j

,

(2) For all j; k 2 IN, if T

j

� L

k

, then L

k

= L

j

.

Using this recursively generable family (T

j

)

j2IN

we de�ne a IIM M witnessing L 2 s�EFIN . Let

L 2 L, t 2 text(L), and x 2 IN.

M(t

x

) = \ If x = 0 or M when fed successively with t

x�1

does not stop, then execute stage x.

Stage x: Search for the least j such that t

+

x

� L

j

. Test whether or not T

j

� t

+

x

.

In case it is, output j and stop.

Otherwise, request the next input and output nothing."

It remains to show that L � s�EFIN(M). By construction, M uses L as hypothesis space.

Claim 1. M �nitely infers L.

Let t 2 text(L). It remains to show that M stops sometimes, say with j, and that L = L

j

. Let

k be the least number satisfying L = L

k

. By property (1), T

k

� L

k

. Since t

+

= L, there must

be an x such that T

k

� t

+

x

. Now, there is only one case imaginable that could prevent M to stop.

Namely, it exists a j < k with L � L

j

and T

j

6� L. Clearly, in this case M would verify t

+

y

� L

j

but it never veri�es T

j

� t

+

y

. However, since L � L

j

, and L = L

k

we conclude T

k

� L

j

. Therefore,

L = L

j

, by property (2), a contradiction. Consequently, M has to stop sometimes. Suppose, M ,

when fed t

y

outputs j and stops. But then, in accordance with M 's de�nition, M has veri�ed

t

+

y

� L

j

and T

j

� t

+

y

. Hence, T

j

� L

k

. By property (2), we directly obtain L

j

= L

k

= L. This

proves the claim.

Claim 2. M is set-driven.

Let t

x

and

^

t

y

be two initial text segments of a language L 2 L such that t

+

x

=

^

t

+

y

. We have to

show that M(t

x

) = M(

^

t

y

). Suppose, M executes stage x or y, respectively. Since L 2 L, there

exists a least number k such that L = L

k

. Hence, M �nds indices i; j such that t

+

x

� L

i

and

7



^

t

+

y

� L

j

. Because of t

+

x

=

^

t

+

y

, we may conclude i = j. Since the tell-tale sets T

j

are uniformly

recursively generable,M can e�ectively compute T

j

. If T

j

6� t

+

x

, then T

j

is not a subset of

^

t

+

y

either.

Hence, in this case M does not output a hypothesis when fed t

x

and

^

t

y

, respectively. On the other

hand, if T

j

� t

+

x

then T

j

�

^

t

+

y

. Therefore, M(t

x

) =M(

^

t

y

) = j.

Finally, suppose M has stopped when successively fed t

x�1

. Clearly, then M has output a

hypothesis, say j. We have to show that M(

^

t

y

) = j. Since M �nitely infers L, we know that

L

j

= L. Moreover, M has veri�ed that T

j

� t

+

z

� L

j

for some z < x. By assumption, t

+

x

=

^

t

+

y

,

and therefore t

+

z

�

^

t

+

y

. We distinguish the following two cases.

Case 1. M when successively fed

^

t

y�1

does not stop.

Since j is the least index with t

+

z

� L

j

and since L

j

= L, we conclude that j is the smallest

number such that

^

t

+

y

� L

j

. Hence, T

j

� t

+

z

�

^

t

+

y

, and M outputs j.

Case 2. M when successively fed

^

t

y�1

stops.

Suppose M(

^

t

m

) = k for some m < y. As above, then L

k

= L. However, as we already seen in

the proof of Claim 1, M always outputs the least index of the language it actually learns. Hence,

we obtain k = j. This proves the claim.

q.e.d.

As we have already mentioned, the examples of Sch�afer (1984) and Fulk (1990) witnessing the

restriction of set-driven learners are not indexed families. Hence, we ask whether the uniform

recursiveness of all target languages may compensate the impact to learn with set-driven IIMs.

The answer is no as the following theorem impressively shows.

Theorem 2. s�CLIM � ELIM = LIM = CLIM

Proof. The part ELIM = LIM = CLIM is due to Lange and Zeugmann (1993b). It remains

to show that s�CLIM � ELIM .

The desired indexed family L is de�ned as follows. For all k 2 IN we set L

hk;0i

= fa

k

b

n

n 2 IN

+

g.

For all k 2 IN and all j 2 IN

+

we distinguish the following cases:

Case 1. : �

k

(k) � j

Then we set L

hk;ji

= L

hk;0i

.

Case 2. �

k

(k) � j

Let d = 2 � �

k

(k) � j. Now, we set:

L

hk;ji

=

(

fa

k

b

m

1 � m � dg; if d � 1;

fa

k

bg; otherwise:

L = (L

hk;ji

)

j;k2IN

is an indexed family of recursive languages, since the predicate \�

i

(y) � z" is

uniformly decidable in i; y; and z.

Claim A. L 62 s�CLIM

Since the halting problem is undecidable, Claim A follows by contraposition of the following

Claim B.

Claim B. If there exists an IIM M with L � s�CLIM(M), then one can e�ectively construct

an algorithm deciding for all k 2 IN whether or not '

k

(k) converges.
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Let M be any IIM that learns L in the limit w.r.t. some hypothesis space G comprising L. We

de�ne an algorithm A that solves the halting problem.

Algorithm A: \On input k execute (A1) and (A2).

(A1) For z = 0; 1; 2; ::: generate successively the lexicographically ordered text t of L

hk;0i

until

M on input t

z

outputs for the �rst time a hypothesis j such that t

+

z

[fa

k

b

z+1

g � L(G

j

).

(A2) Test whether �

k

(k) � z. In case it is, output \'

k

(k) converges."

Otherwise output \'

k

(k) diverges."

Since M has to infer L

hk;0i

in particular from t, there has to be a least z such that M on

input t

z

computes a hypothesis j satisfying t

+

z

[ fa

k

b

z+1

g � L(G

j

). Moreover, the test whether or

not t

+

z

[ fa

k

b

z+1

g � L(G

j

) can be e�ectively performed, since membership in L(G

j

) is uniformly

decidable. By the de�nition of a complexity measure, instruction (A2) is e�ectively executable.

Hence, A is an algorithm.

It remains to show that '

k

(k) diverges, if : �

k

(k) � z. Suppose the converse; then there exists

a y > z with �

k

(k) = y. In accordance with the de�nition of L, we obtain L = t

+

z

2 L. Hence, t

z

is also an initial segment of a text

^

t for L. Due to the de�nition of A, we have L(G

j

) 6= L. Since

M is a set-driven IIM, L = t

+

z

implies M(

^

t

x+r

) = j for all r 2 IN. Therefore, M fails to infer L on

its text

^

t. This contradicts our assumption that L � s�CLIM(M). Hence, Claim B is proved.

Claim C. L 2 ELIM

After a bit of re
ection, it is easy to verify that the following IIMM infers L w.r.t. the hypothesis

space L. Let L 2 L, let t 2 text(L), and let x 2 IN. We de�ne:

M(t

x

) = \Determine the unique k such that t

0

= a

k

b

m

for some m 2 IN. Test whether or not

�

k

(k) � x. In case it is, goto (A). Otherwise, output hk; 0i and request the next input.

(A) Test whether or not a

k

b

�

k

(k)+n

2 t

+

x

for some n 2 IN. In case it is, output hk; 0i and

request the next input. Otherwise, goto (B).

(B) Determine the maximal z 2 IN such that a

k

b

z

2 t

+

x

. Output hk; 2 ��

k

(k)�zi and request

the next input."

q.e.d.

As the latter theorem shows, sometimes there is no way to design a set-driven IIM. However,

with the following theorems we mainly intend to show that the careful choice of the hypothesis

space deserves special attention whenever set-drivenness is desired.

Theorem 3. There is an indexed family L such that

(1) L 2 r�ESMON ,

(2) L 6� LIM(M) for all IIM M , provided M is set-driven,

(3) there is an IIM M such that L � s�CSMON(M).

Proof. The desired indexed family L = (L

hk;ji

)

k;j2N

is de�ned as follows. For all k 2 N we set

L

hk;0i

= fa

k

b

m

j m 2 N

+

g. For all j 2 IN

+

we distinguish the following cases.

9



Case 1. : �

k

(k) � j

Then we de�ne L

hk;ji

= L

hk;0i

.

Case 2. �

k

1

(k

1

) � j

Then we set L

hk;ji

= fa

k

bg.

Claim 1. L 2 r�ESMON .

We have to de�ne an IIM witnessing L 2 ESMON . This is done as follows: Let L 2 L, t 2

text(L), and x 2 IN.

M(t

x

) = \Compute the unique k such that a

k

b

m

2 t

+

x

for some m 2 N . As long as t

+

x

= fa

k

bg

execute (A).

Otherwise, output hk; 0i and request the next input.

(A) Test whether : �

k

(k) � x. In case it is, output nothing and request the next input.

Otherwise, output hk;�

k

(k)i and request the next input."

Obviously,M is rearrangement-independent. In order to prove L � r�ESMON(M) we distinguish

the following cases.

Case 1. '

k

(k) "

In accordance with the de�nition of the indexed family L we directly obtain L = L

hk;0i

= L

hk;ji

for all j 2 N . Since t 2 text(L), there has to be an x such that t

+

x

6= fa

k

bg. Consequently, after

having seen t

x

the IIM M always outputs hk; 0i, a correct hypothesis. Moreover, M obviously

works strong-monotonically.

Case 2. '

k

(k) #

Suppose, L = fa

k

bg. Since t 2 text(L), M executes instruction (A) on every input t

x

. Moreover,

there exists an x

0

such that �

k

(k) � x for all x � x

0

. Hence, after having seen t

x

0

the IIM M

always outputs the correct hypothesis hk;�

k

(k)i.

Now, let us assume L = L

hk;0i

. As we have shown in Case 1, there exists an x 2 IN such that

t

+

x

6= fa

k

bg. Consequently, for all y � x we have M(t

y

) = hk; 0i and M again learns L. Finally,

it might happen that M outputs hk;�

k

(k)i on some initial segment of t and changes its mind

to hk; 0i afterwards. Clearly, this mind change ful�lls the strong-monotonicity constraint. Hence,

L � r�ESMON(M).

Claim 2. L 6� LIM(M) for all IIM M , provided M is set-driven.

This claim is proved via the following lemma.

Lemma 1. Let M be any set-driven IIM such that L � LIM(M) w.r.t. some class preserving

hypothesis space G = (G

j

)

j2IN

. Then M may be used to decide the halting problem.

Proof. We de�ne an algorithm A as follows.

Algorithm A: \On input k execute instruction (A1).

(A1) Simulate M on input a

k

b. If M requests the next input without outputting a hypothesis,

then output \'

k

(k) "," and stop.

Otherwise, let z =M(a

k

b). Execute instruction (A2).

10



(A2) Test whether or not a

k

b

2

2 L(G

z

).

In case it is, output \'

k

(k) "."

Else, output \'

k

(k) #," and stop."

Obviously, A is an algorithm. It remains to show that A behaves correctly. Suppose, A outputs

\'

k

(k) "" but \'

k

(k) #." By de�nition of L, L = fa

k

bg 2 L. SinceM is supposed to be set-driven,

it has to output a correct hypothesis after having seen a

k

b. But it does not, since A has terminated

with \'

k

(k) "." This contradiction directly yields that A behaves correctly if it outputs \'

k

(k) "".

Now, let us assume A terminates with \'

k

(k) #." Taking into account that G = (G

j

)

j2IN

is a

class preserving hypothesis space, we directly see that a

k

b

2

62 L(G

z

) implies L(G

z

) = fa

k

bg. Hence,

\'

k

(k) #." This proves the lemma.

Since the halting problem is not recursive, the contraposition of Lemma 1 implies Claim 2.

Claim 3. L 2 s�CSMON .

First of all we de�ne the desired class comprising hypothesis space. For all k 2 IN we set

L(G

j

) =

8

<

:

L

hk;0i

; if j = 2k;

fa

k

bg; if j = 2k + 1:

Obviously, G = (G

j

)

j2IN

is an admissable hypothesis space. A set-driven IIM M witnessing L 2

CSMON may be easily de�ned as follows. As long as it receives an initial segment t

x

of a text t

such that t

+

x

= fa

k

bg it outputs 2k + 1. If fa

k

bg � t

+

x

, it hypothesizes 2k. We omit the details.

q.e.d.

Theorem 3 directly yields the following corollary which relates the power of set-driven and

unrestricted IIMs to one another.

Corollary 4. For all ID 2 fSMON;MON;WMONg:

(1) s�EID � EID

(2) s�ID � ID

Proof. This corrollary follows immediately from Theorem 3. There, we have shown r�ESMON n

s�LIM 6= ;. This yields all the proper inclusions mentioned, since ESMON � SMON ,

ESMON � EID � ID for all ID 2 fMON;WMONg (cf. Lange and Zeugmann (1993b)) as

well as s�EID � s�ID � s�LIM for all ID 2 fSMON;MON;WMONg by de�nition.

q.e.d.

As we have seen, set-drivenness constitutes a severe restriction. While this is true in general as

long as exact and class preserving learning is considered, the situation looks di�erently in the class

comprising case. On the one hand, learning in the limit cannot always be achieved by set-driven

IIMs (cf. Theorem 2). On the other hand, conservative learners may always be designed to be

set-driven, if the hypothesis space is appropriately chosen.

Theorem 5. s{CCONSERVATIVE = CCONSERVATIVE

Proof. We partition the proof into two parts. First, we show that every indexed family in

CCONSERVATIVE belongs to r{CCONSERVATIVE (cf. Lemma 1) below. Then we apply this

result and show that set-drivenness does not restrict the power of class comprising conservative

learning (cf. Lemma 2).
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Lemma 1. r{CCONSERVATIVE = CCONSERVATIVE

Let L 2 CCONSERVATIVE . By Theorem 14 in Lange and Zeugmann (1993c) there exists

a hypothesis space G = (G

j

)

j2IN

and a recursively generable tell-tale family (T

j

)

j2IN

of �nite and

non-empty sets such that

(1) range(L) � L(G),

(2) for all j 2 N , T

j

� L(G

j

),

(3) for all j; k 2 IN, if T

j

� L(G

k

), then L(G

k

) 6� L(G

j

).

Using this tell-tale family, we de�ne a new recursively generable family (

^

T

j

)

j2IN

of �nite and non-

empty sets that allows the design of a rearrangement-independent IIM inferring L conservatively

w.r.t. G. For all j 2 IN we set

^

T

j

=

S

n�j

T

n

\ L(G

j

).

It is easy to see that (

^

T

j

)

j2IN

ful�lls (1) through (3), too. Next, we even show the following

stronger result.

Statement 1. L(G) 2 ECONSERVATIVE.

The desired IIM is de�ned as follows. Let L 2 L(G), t 2 text(L), and x 2 N .

M(t

x

) = \Generate

^

T

k

for all k � x and test whether

^

T

k

� t

+

x

� L(G

k

). In case there is one k

ful�lling the test, output the minimal one, and request the next input.

Otherwise, output nothing and request the next input."

Obviously, M is rearrangement-independent.

Claim 1. M works conservatively.

Let k and j be two hypotheses produced by M on input t

x

and t

x+r

, respectively. We have to

show that t

+

x+r

6� L(G

k

). For that purpose we distinguish the following cases.

Case 1. k < j

Due to M 's de�nition we immediately obtain t

+

x+r

6� L(G

k

).

Case 2. j < k

Suppose, t

+

x+r

� L(G

k

). In accordance with its de�nition, M has veri�ed that

^

T

j

� t

+

x+r

�

L(G

j

). Moreover, the de�nition of the tell-tale family directly yields

^

T

j

�

^

T

k

, since j < k and

^

T

j

� t

+

x+r

� L(G

k

). Taking into account that

^

T

k

� t

+

x

, this implies

^

T

j

� t

+

x

� L(G

j

). Finally, since

j < k we conclude M(t

x

) = j, a contradiction. Hence, the claim is proved.

Claim 2. M infers L from t.

Let z = �k [L(G

k

) = L]. Therefore, L(G

j

) 6= L for all j � z. Applying property (3), we obtain

that L n L(G

j

) 6= ; for all j < z provided

^

T

j

� L. Consequently, every candidate hypothesis j < z

is sometimes rejected by M , and M converges to z. Hence, the claim follows and Statement 1 is

proved.

Finally, since L � L(G), we may easily conclude that L � r�CCONSERVATIVE(M). This

proves Lemma 1.

Lemma 2. Let L be any indexed family. If L 2 CCONSERVATIVE , then there exists a

hypothesis space

~

G = (

~

G

j

)

j2IN

and an IIM

~

M such that L � s�CCONSERVATIVE(

~

M) w.r.t.

~

G.
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First, we de�ne the hypothesis space

~

G = (

~

G

j

)

j2IN

as follows. Applying Lemma 1, there exists

a hypothesis space G = (G

j

)

j2IN

and and IIM such that L � r�CCONSERVATIVE(M) w.r.t. G

as well as L(G) � r�ECONSERVATIVE(M). Afterwards, we use the latter statement and show

a more general result which turns out to be quite helpful in order to prove Corollary 6. The

hypothesis space

~

G is the canonical enumeration of all grammars from G and all �nite languages

over the underlying alphabet �. Second, the main ingredient to the de�nition of the desired IIM

~

M

is the machine M from Lemma 1. However, before de�ning it we introduce the notion of repetition

free text rf(t). Let t = s

0

; s

1

; ::: be any text. We set rf(t

0

) = s

0

and proceed inductively as

follows: For all x � 1, rf(t

x+1

) = rf(t

x

), if s

x+1

2 rf(t

x

)

+

, and rf(t

x+1

) = rf(t

x

); s

x+1

otherwise.

Obviously, given any initial segment t

x

of a text t one can e�ectively compute rf(t

x

).

Statement 2. L(G) 2 s�CCONSERVATIVE

Now, let L 2 L(G), t 2 text(L), and x 2 IN.

~

M(t

x

) = \Compute rf(t

x

). If M on input rf(t

x

) outputs a hypothesis, say j, then output the

canonical index of j in

~

G and request the next input.

Otherwise, output the canonical index of t

+

x

in

~

G and request the next input."

Claim 1.

~

M is set-driven.

Let t

x

and

^

t

y

be be two initial text segments of a language L 2 L(G) such that t

+

x

=

^

t

+

y

. We

have to show that

~

M(t

x

) =

~

M(

^

t

y

). Clearly, length(rf(t

x

)) = length(rf(

^

t

y

)), and therefore we

conclude M(rf(t

x

)) =M(rf(

^

t

y

)), since M works rearrangement-independent. That means, either

M outputs in both cases the same hypothesis or it outputs nothing on input rf(t

x

) and rf(

^

t

y

),

respectively. This proves the claim.

Claim 2.

~

M works conservatively.

By construction,

~

M outputs on any input a hypothesis. Let j =

~

M(t

x

) and k =

~

M(t

x+1

) with

j 6= k. Since

~

M is set-driven, we obtain t

+

x

� t

+

x+1

. We consider the following cases.

Case 1. M on input rf(t

x

) does not output a hypothesis.

Then L(

~

G

j

) = t

+

x

, and consequently, t

+

x+1

6� L(

~

G

j

). Hence,

~

M performs a justi�ed mind change.

Case 2. M on input rf(t

x

) outputs a hypothesis.

Obviously, rf(t

x

) is a proper initial segment of rf(t

x+1

). Suppose,M on input rf(t

x+1

) produces

a hypothesis, too. Since M works conservatively, we immediately obtain t

x+1

6� L(

~

G

j

). Hence,

it remains to consider the scenario in which M on input rf(t

x+1

) does not produce a hypothesis.

Looking at M 's de�nition, we see that M could be prevented from doing it only by detecting an

inconsistency. Consequently,

~

M works conservatively.

Claim 3.

~

M infers L from t.

Again, we distinguish two cases.

Case 1. L is �nite.

Then there exists an x 2 IN such that t

+

x

= L. Moreover, if M on input rf(t

x

) produces a

hypothesis, then it is a correct one, since M works conservatively. Hence, in this case

~

M infers L

from t. On the other hand, if M on input rf(t

x

) does not output a hypothesis, then

~

M converges

to the canonical index of the �nite language t

+

x

in

~

G, since

~

M is set-driven.

Case 2. L is in�nite.

13



Since L is in�nite, rf(t) is a text for L, too. Moreover, M has to infer L in particular from

rf(t). Therefore, there exists an x 2 IN such that M(rf(t)

x+r

) = k with L(G

k

) = L for all r 2 IN.

Hence, after some point

~

M exclusively outputs the canonical index of L(G

k

) in

~

G. Consequently,

it infers L.

Therefore, Statement 2 is proved. Since L � L(G), it follows L � CCONSERVATIVE(

~

M ).

q.e.d.

Corollary 6. Let L 2 CCONSERVATIVE . Then, there is a hypothesis space G = (G

j

)

j2IN

comprising L such that L(G) 2 s�ECONSERVATIVE .

Proof. Let L 2 CCONSERVATIVE . Furthermore, due to the latter theorem, there is an IIM

~

M and a hypothesis space

~

G such that L � s�CCONSERVATIVE(

~

M ) w.r.t.

~

G. Let

~

M and

~

G be

de�ned as in Lemma 2.

Recall that

~

G is a canonical enumeration of grammars de�ning all languages in L and of all �nite

languages over the underlying alphabet. Without loss of generality we may assume that

~

G ful�lls

the following property. If j is even, then L(

~

G

j

) 2 s�CCONSERVATIVE(M). Otherwise, L(

~

G

j

)

is a �nite language.

We start with the de�nition of the desired hypothesis space G = (G

j

)

j2IN

. If j is even, then we

set G

j

=

~

G

j

. Otherwise, we distinguish the following cases. If M when fed the lexicographically

ordered enumeration of all strings in L(

~

G

j

) outputs the hypothesis j, then we set G

j

=

~

G

j

. In case

it does not, we set G

j

=

~

G

j�1

.

Now we are ready to de�ne the desired IIM M witnessing L(G) 2 s�ECONSERVATIVE . Let

L 2 L(G), t 2 text(L), and x 2 IN.

M(t

x

) = \Simulate

~

M on input t

x

. If

~

M does not output any hypothesis, then output nothing and

request the next input.

Otherwise, let

~

M(t

x

) = j. Output j and request the next input."

Since

~

M is a conservatively working and set-driven IIM, M behaves thus. It remains to

show that M learns L. Obviously, if L = L(G

2k

) for some k 2 IN, then

~

M infers L, since

L 2 s�CCONSERVATIVE(

~

M). Therefore, since M simulates

~

M , we are done.

Now, let us suppose, L 6= L(G

2k

) for some k 2 IN. By de�nition of G, we know that L is �nite.

Moreover, since t is a text for L, there exists an x such that t

+

y

= L for all y � x. Recalling

the de�nition of G, and by assumption, we obtain the following. There is a number j such that

~

M(t

x

) = j, L = t

+

x

= L(

~

G

j

) = L(G

j

). Hence, M(t

x

) = j, too. Finally, since M is set-driven, we

directly get M(t

y

) = j for all y � j. Consequently, M learns L.

q.e.d.

The next theorem gives some more evidence that set-drivenness is not that restrictive as it might

seem.

Theorem 7.

(1) s�SMON nEWMON 6= ;,

(2) s�CSMON nWMON 6= ;,

(3) s�EWMON nMON 6= ;.
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Proof. First of all, we show assertion (1). Let us consider the following indexed family L

sm

=

(L

hk;ji

)

j;k2IN

. For all k 2 IN, we set L

hk;0i

= fa

k

b

n

n 2 IN

+

g. For all k 2 IN and all j 2 IN

+

, we

distinguish the following cases:

Case 1. : �

k

(k) � j.

We set: L

hk;ji

= L

hk;0i

.

Case 2. �

k

(k) � j.

Then, we set: L

hk;ji

= fa

k

b

m

1 � m � �

k

(k)g.

In Lange and Zeugmann (1993b) it was already shown that the family L

sm

is witnessing SMONn

EWMON 6= ;. Hence, it remains to show the following claim.

Claim A. L

sm

2 SMON .

We have to show that there are a space of hypotheses G = (G

j

)

j2IN

with range(L

sm

) = L(G)

and a set-driven IIM M such that M does strong-monotonically infer L w.r.t. G.

First of all, we de�ne the space of hypotheses G. For all k 2 IN, we set L(G

2k

) =

T

j2IN

L

hk;ji

and

L(G

2k�1

) = L

hk;0i

.

Since L

sm

is an indexed family, it is easy to verify that membership is uniformly decidable for

G. Moreover, we have range(L

sm

) = L(G).

Let L 2 L

sm

, let t be any text for L, and let x 2 IN. The desired IIM M is de�ned as follows.

M(t

x

) = \Determine the unique k such that t

0

= a

k

b

m

for some m 2 IN. Test whether or not

t

+

x

2 L(G

2k

). In case it is, output 2k. Otherwise, output 2k � 1."

Obviously, M changes its mind at most once. Since L(G

2k

) � L(G

2k�1

), this mind change

satis�es the monotonicity requirement. Furthermore, M converges to a correct hypothesis for L.

Accordingly to the de�nition, it is easy to see thatM is indeed a set-driven IIM. This proves Claim

A, and therefore (1) follows.

In order to prove assertion (2), we use the following indexed family L

csm

= (L

hk;ji

)

j;k2IN

. For all

k 2 IN we set L

hk;0i

= fa

k

b

n

n 2 IN

+

g. For all k 2 IN and all j 2 IN

+

we distinguish the following

cases:

Case 1. :�

k

(k) > j

We set: L

hk;ji

= L

hk;0i

Case 2. �

k

(k) � j

Let d = j � �

k

(k). Then, we set:

L

hk;ji

= fa

k

b

m

1 � m � �

k

(k)g [ fa

k

b

�

k

(k)+2(d+m)

m 2 IN

+

g

By reducing the halting problem to L

csm

2 WMON , one may prove that L

csm

62 WMON .

An IIM M witnessing L

csm

2 s�CSMON can be easily designed, if one choose the following

space of hypotheses G = (G

hk;ji

)

j;k2IN

. For all k; j 2 IN, we set L(G

hk;0i

) =

T

j2IN

L

hk;ji

and

L(G

hk;j+1)

) = L

hk;ji

. We omit further details.
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The remaining part can be easily shown. One has simply to choose the same indexed family as

used in Lange and Zeugmann (1993a) in order to separate WMON and MON .

q.e.d.

4. Learning with Rearrangement-Independent IIMs.

In this section we study the impact of rearrangement-independence on the learning power of

IIMs. We start with learning in the limit. Angluin (1980b) characterized the learnability of those

indexed families L that are inferable w.r.t. the hypothesis space L in terms of �nite, and recursively

enumerable tell-tales. Actually, she proved the slightly stronger result that r�ELIM = ELIM .

Recently, we showed ELIM = LIM = CLIM (cf. Lange and Zeugmann (1993d)), and hence we

know that rearrangement-independence does not restrict the inference power of IIMs that learn in

the limit. However, this general result is also a direct consequence of theorems obtained by Sch�afer

(1984), and later, but independently by Fulk (1990) who proved that any IIM M learning in the

limit may be replaced by a rearrangement-independent IIM that infers as least as much than M

does. Moreover, Sch�afer's (1984) and Fulk's (1990) is much stronger than Angluin's (1980b), since

it is not restricted to the learnability of indexed families. By the next theorem we summarize the

known results.

Theorem 8. (Angluin (1980b), Sch�afer (1984), Fulk (1990))

r�ELIM = ELIM = LIM = CLIM

However, neither Sch�afer's (1984) nor Fulk's (1990) transformation does preserve any of the

monotonicity requirements de�ned above. And indeed, the situation is more subtle than we ex-

pected. Furthermore, since the power of all types of monotonic language learning heavily depends

on the choice of the hypothesis space, we have to consider separately all the resulting cases. We

start with strong-monotonic inference.

Theorem 9.

(1) r�ESMON = ESMON ,

(2) r�SMON = SMON .

Proof. First, we prove assertion (2).

Let L 2 SMON . Applying the characterization theorem for SMON (cf. Lange and Zeugmann

(1992)), we know that there exists a class preserving space of hypothesis G = (G

j

)

j2IN

as well as a

recursively generable family (T

j

)

j2IN

of �nite non-empty sets such that

(i) for all j 2 IN, T

j

� L(G

j

),

(ii) for all j; k 2 IN, if T

j

� L(G

k

), then L(G

j

) � L(G

k

).

On the basis of this family (T

j

)

j2IN

we de�ne a IIMM witnessing L 2 r�SMON . So let L 2 L,

t 2 text(L), and x 2 IN.

M(t

x

) = \Search for the least j � x for which T

k

� t

+

x

� L(G

k

). If it is found, output j and

request the next input.

Otherwise, output nothing and request the next input."
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Obviously, M is a rearrangement-independent IIM. It remains to show that L 2 SMON(M)

w.r.t. the hypothesis space G.

Claim 1. M infers L on text t.

Let j = �z[L(G

z

) = L]. Hence, there is a least x such that T

j

� t

+

x

. Therefore, M will output

ones a hypothesis. For all k < j with T

k

� L we may conclude that L(G

k

) � L. Otherwise, we

obtain L(G

j

) = L(G

k

) = L, because of T

k

� L(G

k

) and T

j

� L(G

j

) (cf. (ii)). Hence, there exists

a y such that t

+

y

6� L(G

k

) for all k < j with T

k

� L. Therefore, M(t

y+r

) = j for all r 2 IN. This

proves the claim.

Claim 2. M works strong-monotonically.

Let M(t

x

) = j and M(t

x+r

) = k for some x 2 IN and r 2 IN

+

. Due to the de�nition of M , we

have T

j

� t

+

x

� L(G

k

). Therefore, L(G

j

) � L(G

k

) (cf. (ii)). This proves the claim.

To sum up, M is witnessing L 2 r�SMON . Thus assertion (2) is shown.

Next, we prove assertion (1). Let L 2 ESMON . Because of ESMON � SMON as well as

of assertion (2), there exists a rearrangement-independent IIM

^

M as well as a class preserving

hypothesis space G such that L � r�SMON(M) w.r.t. the hypothesis space G.

Applying Theorem 4 of Lange and Zeugmann (1993b), we know that there exists some total

recursive function f : IN� IN! IN satisfying

(i) for all j 2 IN, lim

x!1

f(j; x) = k exists and satis�es L(G

j

) = L

k

,

(ii) for all j; x 2 IN, L

f(j;x)

� L

f(j;x+1)

.

That means, f is a limiting recursive strong-monotonic compiler from G into L.

Given the IIM

^

M , the hypothesis space G as well as the limiting recursive strong-monotonic

compiler f , we de�ne an IIM M witnessing L 2 r�ESMON . So, let L 2 L, t 2 text(L), and

x 2 IN.

M(t

x

) = \Simulate

^

M on input t

x

. If

^

M when fed successively t

x

does not output any guess, then

output nothing and request the next input.

Otherwise, let j =

^

M(t

x

). If t

+

x

� L(G

j

), then execute (A1). Otherwise, output nothing and

request the next input.

(A1) Find the least y 2 IN for which t

+

x

� L

f(j;y)

. Output f(j; y) and request the next input."

Since the membership problem for G is uniformly decidable, the test \t

+

x

� L(G

j

)" can be e�ec-

tively performed. Additionally, since L is an indexed family, the test within instruction (A1) can be

e�ectively accomplished, too. Furthermore, by property (i) of f and since t

+

x

� L(G

j

), instruction

(A1) has to terminate for every j 2 IN. Hence, M is indeed an IIM. Due to its de�nition, M is

rearrangement-independent IIM, since the IIM

^

M simulated by M is rearrangement-independent

by assumption.

It remains to show that M strong-monotonically infers L from text t. Since

^

M infers L from

text t and by property (i) of f , M converges to a correct hypothesis for L. Finally, we show

that M ful�lls the strong-monotonicity constraint. Let f(j; y) and f(k; z) denote two successively
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hypotheses generated by M . Hence, M(t

x

) = f(j; y) and M(t

x+r

) = f(k; z) for some x 2 IN,

r 2 IN

+

. We distinguish the following cases.

Case 1. j = k

Due to the de�nition of M , we may conclude y � z. Hence, property (ii) guarantees L

f(j;y)

�

L

f(j;z)

.

Case 2. j 6= k

Since f satis�es (i) and (ii), we obtain L

f(j;y)

� L(G

j

). Furthermore, M 's de�nition implies

t

+

x+r

� L

f(k;z)

. Hence, the given IIM

^

M has generated the hypothesis j on an initial segment of a

text for L

f(k;z)

2 L. Since

^

M works strong-monotonically on every text for every language L 2 L,

we may conclude that L(G

j

) � L

f(k;z)

. Together with L

f(j;y)

� L(G

j

), we get L

f(j;y)

� L

f(k;z)

.

Thus, M is rearrangement-independent and it works strong-monotonically. This proves the

theorem.

q.e.d.

It remains open whether or not the above theorem extends to the class comprising case. Next

we consider monotonic language learning. Now, the situation is completely di�erent, since we have

the following theorem.

Theorem 10.

(1) s�EMON � r�EMON � EMON ,

(2) s�MON � r�MON �MON .

Proof. First of all, we show r�EMON n s�MON 6= ;. By de�nition, this yields immediately

s�EMON � r�EMON as well as s�MON � r�MON .

Lemma 1. r�EMON n s�MON 6= ;

By Theorem 3 we already know that r�ESMON n s�LIM 6= ;. It is easy to verify that

r�ESMON � r�EMON . By de�nition, s�MON � s�LIM . Hence, we may conclude

r�EMON n s�MON 6= ;. This proves the lemma.

It remains to show EMONnr�MON 6= ;. This statement directly implies r�EMON � EMON

and r�MON �MON , and hence, the is theorem is proved.

Lemma 2. EMON n r�MON 6= ;

First of all, we de�ne a corresponding family L = (L

k

)

k2IN

. For all k 2 IN and all z 2 f0; : : : ; 3g

we de�ne:

L

4k+z

=

8

>

>

>

<

>

>

>

:

fa

k

bg [A

k

; if z = 0;

fa

k

cg [B

k

; if z = 1;

fa

k

b; a

k

cg [A

k

; if z = 2;

fa

k

b; a

k

cg [B

k

; if z = 3:

The remaining languages A

k

and B

k

will be de�ned via their characteristic functions f

A

k

and

f

B

k

, respectively. For all k 2 IN and all strings s 2 fa; b; cg

+

we set:

f

A

k

(s) =

(

1; ; if s = b

k

a

m

and �

k

(k) = m;

0; otherwise:
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f

B

k

(s) =

(

1; if s = c

k

a

m

and �

k

(k) = m;

0; otherwise:

After a bit of re
ection, it is easy to see that L is indeed an indexed family.

Claim 1. L 2 EMON

We de�ne an IIM which monotonically infers every L 2 L from any text t for L w.r.t. the

hypothesis space L itself. So let us assume any L 2 L, any text t for L and any x 2 IN.

M(t

x

) = \If x = 0 orM has not produced any hypothesis when successively fed t

x�1

, then execute

(A1). Otherwise, goto (A2).

(A1) If a

k

b 2 t

+

x

for some k 2 IN, then output 4k and request the next input.

If a

k

c 2 t

+

x

for some k 2 IN, then output 4k + 1 and request the next input.

Otherwise, output nothing and request the next input.

(A2) Let M(t

x�1

) = j. If t

+

x

� L

j

, then repeat the hypothesis j and request the next input.

Otherwise, goto (A3).

(A3) If j = 4k or j = 4k + 1, respectively, for some k 2 IN, then output the hypothesis j + 2

and request the next input.

Otherwise, goto (A4).

(A4) If j = 4k + 2 for some k 2 IN, output 4k + 3 and request the next input.

Otherwise, output 4k + 2 and request the next input."

It remains to show L � EMON(M). Obviously, for every k 2 IN, M identi�es L

4k

as well

as L

4k+1

on every text for the corresponding language. Thereby, M does not perform any mind

change at all. Hence, M works monotonically on every t 2 text(L

4k

)[ text(L

4k+1

), k 2 IN. Let us

assume any k 2 IN such that t is either a text for L

4k+2

or for L

4k+3

. In order to show that M

satis�es the monotonicity constraint we distinguish the following cases.

Case 1. '

k

(k) "

Consequently, we obtain L

4k+2

= L

4k+3

. Since t is a text for the �nite language L

4k+2

, there

is an x 2 IN such that t

+

x

= L

4k+2

. Hence, M(t

x+r

) = j with L

j

= L

4k+2

, for all r 2 IN

+

.

Furthermore, M has generated at most one di�erent hypothesis before this point. Therefore, M

works monotonically. Note that M may converge to di�erent hypotheses on di�erent texts for the

same �nite language. Consequently, M is not rearrangement-independent.

Case 2. '

k

(k) #

Since L

4k+2

as well as L

4k+3

de�ne �nite languages, it is easy to see that M converges to a

correct hypothesis. We distinguish the following subcases.

Subcase 2.1. t is a text for L

4k+2

If M �rst generates the hypothesis 4k, then it needs only one mind change to infer L

4k+2

.

Consequently, M works monotonically. Otherwise, 4k+1 isM 's �rst hypothesis. Now, it is easy to

verify that M produce the sequence of hypotheses 4k+1, 4k+3 and 4k+2. Due to the de�nition

of the family L, L

4k+1

\ L

4k+2

� L

4k+3

directly implies L

4k+1

\ L

4k+2

� L

4k+3

\ L

4k+2

� L

4k+2

.

Hence, M works monotonically.

Subcase 2.2. t is a text for L

4k+3

19



Then, a quite similar argumentation yields that M works monotonically. If M outputs the

hypothesis 4k+1 as its �rst guess, then again, one mind change su�ces to identify L

4k+3

. Otherwise,

M produces the sequences of hypotheses 4k, 4k+2 and 4k+3. Due to the de�nition of the family

L, L

4k

\ L

4k+3

� L

4k+2

. As before, this directly implies that M works monotonically.

Therefore, we obtain L � EMON(M), and the claim is proved.

Claim 2. L 62 r�MON

Suppose the converse, i.e., there is a class preserving hypothesis space G = (G

j

)

j2IN

and an IIM

M such that L � r�MON(M) w.r.t. G.

Claim 3. Given G and any program forM witnessing L 2 r�MON , one can e�ectively construct

an algorithm deciding whether or not '

k

(k) #.

Next to, we de�ne the desired algorithm.

Algorithm A: \On input k execute (A1) until (�1) or (�2) are ful�lled, respectively. Afterwards,

execute (A2).

(A1) For all x = 0; 1; : : :, execute in parallel (�1) and (�2) until one of them is successful.

(�1) Test whether �

k

(k) � x.

(�2) Simulate M when fed the initial segments t

x

and

^

t

x

of the uniquely de�ned texts

for L = fa

k

bg and

^

L = fa

k

cg, respectively. If M outputs on both initial segments

a hypothesis, say m and m̂, respectively, then test whether a

k

b 2 L(G

m

) and a

k

c 2

L(G

m̂

).

(A2) If (�1) happens �rst, then output \'

k

(k) converges" and stop.

Otherwise, in parallel execute (�1) or (�2) for y = 1; 2; : : :, until one of them is successful.

(�1) Test whether �

k

(k) � x+ y.

(�2) Test whether M when fed t

x+y

= a

k

b; : : : ; a

k

b

| {z }

(x+1)�times

; a

k

c; : : : ; a

k

c

| {z }

y�times

generates a consistent

hypothesis n, i.e., M(t

x+y

) = n and t

+

x+y

� L(G

n

).

If (�1) happens �rst, then output \'

k

(k) converges" and stop.

Otherwise, output \'

k

(k) diverges" and stop."

Due to the de�nition of a complexity measure, (�1) and (�1) can be accomplished e�ectively.

Furthermore, since M is an IIM as well as membership is uniformly decidable for L(G), (�2) and

(�2) can be accomplished e�ectively, too. Hence, A is indeed an algorithm.

First, we show that A terminates for all k 2 IN. Let us assume that the execution of (A1)

does not terminate for some k 2 IN. Obviously, then '

k

(k) diverges. Consequently, L

4k

= L

and L

4k+1

=

^

L. Now, since (�2) will never terminate successfully, M fails to infer at least one

the languages fa

k

bg, fa

k

cg from its uniquely de�ned text, a contradiction. Applying the same

arguments one can show that the execution of (A2) has to terminate, too. Hence, A terminates on

every input k 2 IN.

It remains to show that algorithm A works correctly. Obviously, if A stops its computation with

\'

k

(k) converges", then '

k

(k) is indeed de�ned. Suppose that A has �nished its computation with

\'

k

(k) diverges". Furthermore, assume that '

k

(k) is de�ned. Due to our de�nition, there exists an

x 2 IN such that M(t

x

) = m and M(

^

t

x

) = m̂ with t

+

x

� L(G

m

) as well as

^

t

+

x

� L(G

m̂

). After a bit
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of re
ection, one can easily verify that L(G

m

) = L

4k

and L(G

m̂

) = L

4k+1

. This is caused by the

assumption that M works monotonically w.r.t. a class preserving hypothesis space. Additionally,

there exists a y 2 IN

+

such that M(t

x+y

) = n with t

+

x+y

� L(G

n

). Since M is rearrangement-

independent, we may conclude that M(

^

t

x+y

) = m, where

^

t

x+y

= a

k

c; : : : ; a

k

c

| {z }

(x+1)�times

a

k

b; : : : ; a

k

b

| {z }

y�times

, since

t

+

x+y

=

^

t

+

y+x

. Because fa

k

b; a

k

cg � L(G

n

) as well as L(G

n

) 2 L, it su�ces to distinguish the

following two cases.

Case 1. L(G

n

) = L

4k+2

Since A terminates with \'

k

(k) diverges", we obtain �

k

(k) > x+y. Therefore,

^

t

x+y

is an initial

segment of a text for L

4k+3

. On this text, M has already generated the hypotheses m̂ and n in some

subsequent steps. Since '

k

(k) is de�ned, by assumption we obtain L

4k+1

\L

4k+3

6� L

4k+2

\L

4k+3

.

Therefore, L(G

m̂

) = L

4k+1

and L(G

n

) = L

4k+2

directly imply that M violates the monotonicity

requirement, a contradiction.

Case 2. L(G

n

) = L

4k+3

Using similar arguments, it is easy to see that M violates the monotonicity requirement when

inferring L

4k+2

from any of its texts having the initial segment t

x+y

.

This proves the correctness of algorithm A. Thus, Claim 3 is shown.

On the other hand, the halting problem is undecidable. Therefore, Claim 2 follows, and the

theorem is proved.

q.e.d.

Finally, we consider rearrangement-independence in the context of exact and class preserving

conservative learning. Since conservative learning is exactly as powerful as weak-monotonic one,

by the latter Theorem one might expect that rearrangement-independence is a severe restriction

under the weak-monotonic constraint, too. On the other hand, looking at theorem 5 we see that

conservative learning has its peculiarities. And indeed, exact and class preserving learning can

always be performed by rearrangement-independent IIMs. In order to prove this, we �rst charac-

terize ECONSERVATIVE in terms of �nite tell-tales. We present this theorem separately, since it

is interesting in its own right.

Theorem 11. Let L be an indexed family. Then, L 2 ECONSERVATIVE if and only if there

exists a recursively generable family (T

y

j

)

j;y2IN

of �nite sets such that

(1) for all L 2 L there exists a j with L

j

= L and T

y

j

6= ; for almost all y 2 IN,

(2) for all j; y 2 IN, T

y

j

6= ; implies T

y

j

� L

j

and T

y

j

= T

y+1

j

,

(3) for all j; y; z 2 IN, ; 6= T

y

j

� L

z

implies L

z

6� L

j

.

Proof. Necessity. Let L 2 ECONSERVATIVE . Then there is an IIM M such that L �

ECONSERVATIVE(M) w.r.t. L. The desired tell-tale family (T

y

j

)

j;y2IN

is de�ned as follows. Let

j; y 2 IN; then we set

T

y

j

=

8

<

:

range t

j

z

; if z = minfx j x � y; M(t

j

x

) = jg;

;; otherwise;
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where t

j

denotes the canonical text of L

j

. Obviously, the sets T

y

j

are uniformly recursively

generable and �nite. It remains to show that the properties (1) through (3) are ful�lled.

By construction, (2) is trivially satis�ed. In order to prove (1), let L 2 L and let t

L

be the

canonical text of L. Since M has to infer L from its canonical text, too, there exists a j such

that j = M(t

L

x

) for almost all x 2 IN and L = L

j

. Let y = �x[M(t

L

x

) = j]. Then T

y

j

6= ; and

T

y

j

= T

y+r

j

for all r 2 IN. This proves property (1). Finally, we have to show (3). Suppose, there

are j; y; z 2 IN such that ; 6= T

y

j

� L

z

and L

z

� L

j

. By the de�nition of the tell-tale sets, there

exists an x � y such that M on input w

0

; :::; w

x

outputs j, where w

0

; :::; w

x

are the strings of T

y

j

written in canonical order w.r.t. L

j

. Furthermore, T

y

j

� L

z

and therefore, w

0

; :::; w

x

is an initial

segment of a text for L

z

. Since M has to infer L

z

from every text, it has to perform at least one

mind change on every text t 2 text(L

z

) beginning with w

0

; :::; w

x

that cannot be caused by an

inconsistency. This contradiction proves (3).

Su�ciency. The desired IIM is de�ned as follows. Let L 2 L, t 2 text(L), and x 2 IN.

M(t

x

) = \If x = 0 or x > 0 and M on input t

x�1

does not produce any hypothesis, then goto (B).

Otherwise, goto (A).

(A) Let j be M 's last hypothesis on input t

x�1

. Test whether or not t

+

x

� L

j

. In case it is,

output j and request the next input.

Otherwise, goto (B).

(B) Generate T

y

j

for all j; y = 1; :::; x and test whether or not T

y

j

6= ;. For all non-empty T

y

j

check whether or not T

y

j

� t

+

x

� L

j

. In case there is one j ful�lling the test, output the

minimal one, and request the next input.

Otherwise, output nothing and request the next input."

Using the same arguments as in the proof of Theorem 1 in Lange and Zeugmann (1992), it is

easy to see that L � ECONSERVATIVE(M). We omit the details.

q.e.d.

Now we are ready to prove the announced theorem stating that rearrangement-independence

does not restrict exact and class preserving conservative learning.

Theorem 12.

(1) r�ECONSERVATIVE = ECONSERVATIVE ,

(2) r�CONSERVATIVE = CONSERVATIVE .

Proof. First we prove assertion (1). Let L 2 ECONSERVATIVE . By Theorem 11 there exists

a recursively generable family (T

y

j

)

j;y2IN

ful�lling properties (1) through (3). Using this family, we

de�ne a new recursively generable family (

^

T

y

j

)

j;y2IN

that satis�es (1), (2), and (3), too. However,

the new family allows the design of a rearrangement-independent IIM, while the IIM described in

the proof of Theorem 11 is not rearrangement-independent.

We set

^

T

y

j

= ;, if j � y. Now, let j < y; we de�ne

^

T

y

j

=

8

>

>

>

<

>

>

>

:

^

T

y�1

j

; if

^

T

y�1

j

6= ;;

;; if

^

T

y�1

j

= ;; T

y

j

= ;;

S

k�y�1

T

y

k

\ L

j

; otherwise:
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Since (T

y

j

)

j;y2IN

is a recursively generable family and because of the uniform decidability of the

membership problem for L, the family (

^

T

y

j

)

j;y2IN

is recursively generable, too. It is easy to see that

(

^

T

y

j

)

j;y2IN

ful�lls properties (1) through (3) of Theorem 11. We proceed with a technical claim that

will be very useful in proving the rearrangement-independence of the IIM de�ned below.

Claim 1. Let j; k;m; n 2 IN such that m = �y[

^

T

y

j

6= ;] und n = �y[

^

T

y

k

6= ;]. Then,

^

T

n

k

\L

j

�

^

T

m

j

provided n � m.

In accordance with the de�nition of the family (

^

T

y

j

)

j;y2IN

we know that m > j as well as n > k.

Furthermore,

^

T

m

j

=

S

z�m�1

T

m

z

\ L

j

and

^

T

n

k

=

S

z�n�1

T

n

z

\ L

k

. Hence, we obtain:

^

T

n

k

\L

j

=

S

z�n�1

T

n

z

\L

k

\L

j

�

S

z�n�1

T

n

z

\L

j

�

S

z�n�1

T

m

z

\L

j

�

S

z�m�1

T

m

z

\L

j

=

^

T

m

j

.

This proves the claim.

Now we de�ne the desired rearrangement-independent IIM as follows. Let L 2 L, t 2 text(L),

and x 2 N .

M(t

x

) = \Test for all k � x whether or not

^

T

x

k

6= ;. For all non-empty

^

T

x

k

check whether or not

^

T

x

k

� t

+

x

� L

k

.

In case there is no k ful�lling the test, output nothing and request the next input.

Otherwise, compute y

k

= �y[

^

T

y

k

6= ;] for all k ful�lling the test. Output the minimal k for

which y

k

is minimal, and request the next input."

It remains to show that L � r�ECONSERVATIVE(M). Obviously, M is rearrangement-

independent.

Claim 2. M works conservatively.

Let j and k, j 6= k, be two hypotheses produced by M on input t

x

and t

x+r

, respectively. We

have to show that t

+

x+r

6� L

j

. In accordance withM 's de�nition we directly obtain

^

T

x

j

6= ; 6=

^

T

x+r

k

.

We consider the following cases.

Case 1.

^

T

x

k

= ;.

Then we have t

x+r

6� L

j

. This can be seen as follows. M on input t

x+r

has to compute y

j

and y

k

. Since

^

T

x

k

= ;, we know that y

j

< y

k

. Consequently, if t

x+r

� L

j

, then M outputs j, a

contradiction.

Case 2.

^

T

x

k

6= ;.

Let m = �y[

^

T

y

j

6= ;] and n = �y[

^

T

y

k

6= ;]. We distinguish the following subcases.

Subcase 2.1. m < n

Applying the same arguments as in Case 1 directly yields t

+

x+r

6� L

j

.

Subcase 2.2.: m = n

Suppose j < k. Again, by the same arguments as in Case 1 one directly obtains t

+

x+r

6� L

j

. We

proceed with k < j. By Claim 1 we get

^

T

n

k

\L

j

�

^

T

m

j

. Suppose, t

+

x+r

� L

j

. Since k =M(t

x+r

), we

immediately obtain that

^

T

n

k

� t

+

x+r

� L

k

. Consequently,

^

T

n

k

\ L

j

=

^

T

n

k

, and hence

^

T

n

k

�

^

T

m

j

� t

+

x

,

since j =M(t

x

). But this implies M(t

x

) = k, since j > k, a contradiction.

Subcase 2.3.: m > n

Again, by Claim 1 we know that

^

T

n

k

\ L

j

�

^

T

m

j

. Moreover, by assumption j = M(t

x

), and
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therefore ; 6=

^

T

m

j

� t

+

x

. Because of m > n, we furthermore conclude that

^

T

n

k

6� t

+

x

, since otherwise

M(t

x

) = k. On the other hand,

^

T

n

k

� t

+

x+r

, since

^

T

n

k

6� t

+

x+r

directly implies k 6=M(t

x+r

). Finally,

if t

+

x+r

� L

j

, then

^

T

n

k

\ L

j

=

^

T

n

k

�

^

T

m

j

. But this would imply

^

T

n

k

� t

+

x

, again a contradiction.

Hence, M works conservatively, and the claim is proved.

Claim 3. M infers L.

Let L 2 L and let t 2 text(L). Moreover, let K = fk j L

k

= L;

^

T

y

k

6= ; for almost all y 2 INg.

By property (1) of the family (

^

T

y

j

)

j;y2IN

we know that K 6= ;. Let k 2 K be such that there is

no

^

k with

^

k < k and �y[

^

T

y

^

k

6= ;] � �y[

^

T

y

k

6= ;]. We show that M converges to k. By Claim 1,

we conclude that

^

T

x

^

k

6= ; and

^

T

y

k

6= ; implies

^

T

x

^

k

�

^

T

y

k

for all

^

k 2 K with

^

k 6= k. Therefore, if M

outputs at least once a correct hypothesis for L, then this hypothesis is k. Let y

k

= �y[

^

T

y

k

6= ;].

Since t is a text for L, there exists a x � y

k

such that

^

T

y

k

k

� t

+

x

� L

k

= L. Hence, on every input

t

x+r

the IIM M has to output a hypothesis. We consider the set C of possible hypotheses that

might be output by M . Let y

j

= �y[

^

T

y

j

6= ;], then C may written as follows.

C = fj j j 2 IN; y

j

� y

k

;

^

T

y

j

j

� t

+

g:

Due to the de�nition of the family (

^

T

y

j

)

j;y2IN

the condition

^

T

y

j

6= ; implies y < j. Therefore, j > y

k

directly yields y

j

> y

k

. Hence, we may rewrite C as C = fj j j � y

k

; y

j

� y

k

;

^

T

y

j

j

� t

+

g.

Consequently, C is �nite. Finally, applying property (3) of Theorem 11 we may conclude L

k

6� L

j

for all j 2 C with j 6= k. Hence, for all j 2 C with j 6= k there exists an x

j

such that t

x

j

6� L

j

.

Since C is �nite, it successively shrinks to fkg, and hence M converges to k.

This proves assertion (1) of the theorem. Assertion (2) can be proved analogously as Lemma 1

in the proof of Theorem 5.

q.e.d.

5. Summary

We start with the following �gure that summarizes the results obtained and points to questions

that remain open. We shall discuss them and some less obvious ones in this section.

exact class preserving class comprising

learning learning learning

FIN

set

drivenness

+

set

drivenness

+

set

drivenness

+

SMON

rearrangement

independence

+

rearrangement

independence

+ ?

MON

rearrangement

independence

{

rearrangement

independence

{ ?

WMON

rearrangement

independence

+

rearrangement

independence

+

set

drivenness

+

LIM

rearrangement

independence

+

rearrangement

independence

+

rearrangement

independence

+

24



For every mode of learning ID mentioned \rearrangement-independence +" indicates r�ID =

ID as well as s�ID � ID. \Rearrangement-independence {" implies s�ID � r�ID � ID whereas

\set-drivenness +" should be interpreted as s�ID = ID and, therefore, r�ID = ID, too.

Besides the two open problems we have pointed to in the �gure above, there are two more

intriguing questions deserving attention. First, it would be highly desirable to elaborate character-

istic conditions under what circumstances set-drivenness does not restrict the learning power. We

expect that such charcterizations might allow much more insight into the problem how to handle

simultaneously both, �nite and in�nite languages in the learning process. Next, as we have seen,

an algorithmically solvable learning problem might become infeasible, if one tries to solve it with

set-driven IIMs. On the other hand, when dealing with particular learning problems it might often

be possible to design a set-driven learning algorithm solving it. But what about the complexity of

learning in such circumstances? More precisely, we are interested in knowing whether the \high-

level" theorem separating set-driven learning from unrestricted one, has an analogue in terms of

complexity theory. For example, it is well conceivable that an indexed family L may be learned in

polynomial time but no set-driven algorithm can e�ciently infer L provided P 6= NP .
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