Classifying Recursive Predicates and Languages

Rolf Wiehagen* Carl H. Smith'
Universitdt Kaiserslautern Department of Computer Science
Fachbereich Informatik University of Maryland
P.O. Box 3049 College Park,
67653 Kaiserslautern, Germany MD 20742 USA
wiehagen@informatik.uni-kl.de smith@cs.umd.edu

Thomas Zeugmann
TH Darmstadt
Institut fiir Theoretische Informatik
Alexanderstr. 10
64283 Darmstadt, Germany

zeugmann@iti.informatik.th-darmstadt.de

Abstract

We study the classification of recursive predicates and languages. In par-
ticular, we compare the classification of predicates and languages with the
classification of arbitrary recursive functions and with learning. Moreover, we
refine our investigations by introducing classification with a bounded number
of mind changes and establish a new hierarchy. Furthermore, we introduce
multi-classification and characterize it. Finally, we study the classification of
families of languages that have attracted a lot of attention in learning theory.

1. Introduction

Learning and classification have attracted considerable attention by computer sci-
entists, both in theory and practice. Inductive inference is an important aspect of
learning that has been widely studied (cf. Angluin and Smith (1983, 1987)). The

inductive inference problem is to take finite samples of some target concept and to

*The first author was supported by the German Ministry for Research and Technology (BMFT)
under grant no. 01 IW 101 E7

TThe second author was supported in part by NSF Grant 9020079

generalize an algorithm that can produce all other samples of the same concept.
Hence, inductive inference may be regarded as the most general framework to study
the generalization problem (cf. Michalski et al. (1983)). The classification problem
may be described as follows: Given a number of, usually finite, choices, one takes
finite samples of a target concept and has to find out algorithmically to which of the
possible choices the concept belongs to (cf. Duda and Hart (1973)).

Recently, the problem of classification has been compared with the inductive in-
ference problem in a recursion theoretic setting (cf. Wiehagen and Smith (1992)). In
that paper a new formalization of classification was introduced.

The aim of the present paper is fourfold. First, we apply the previously developed
formalism to investigate the classification of {0,1} valued recursive functions. These
functions are often called predicates as they represent binary decisions on the input.
By utilizing the isomorphism between strings of symbols and the natural numbers,
the predicates over the natural numbers also represent formal languages. Hence, we
simultaneously study the classification of predicates and languages. On the one hand,
we are interested in learning the differences and similarities between the classification
of predicates and arbitrary recursive functions. On the other hand, we enrich this
study by considering the following two cases. In the first case we are satisfied if the
classification algorithm produces any one of the possibly many correct answers. In the
second case we require the classification algorithm to produce all of the correct classi-
fications (cf. Definition 3). Second, we compare the power of classification algorithms
that are allowed to produce only a single guess (finite classification, cf. Definition 2,
the ¢ = 0 case) with those that may change their mind a predetermined fixed num-
ber of times (cf. Definition 2, the ¢ € IN case). Third, we introduce the notion of
consistent classification (cf. Definition 4) and compare it with general classification.
Finally, we study classification of families of languages that have received considerable
attention in learning theory.

2. Technical Preliminaries

By IN = {0,1,2,...} we denote the set of all natural numbers. Members of IN will
serve as names for programs. The function computed by program ¢ will be denoted
by ¢;. Most reasonable ways of assigning names to programs results in a list ¢g, 1,

. called an acceptable programming system (cf. Machtey and Young (1978)). By R
we denote the class of all recursive functions. The class of {0,1} valued recursive
functions, our model of both predicates and languages, is denoted by Ro1. A set
is recursively enumerable (r.e.) iff it is the domain of some ¢;. A more intuitive,
equivalent characterization of the r.e. sets is to call a set r.e. if it is either the range of
a recursive function or it is empty. In this way it is easy to see that the r.e. sets are
the ones for which we can write a procedure that prints out, eventually, all and only
members of the set in question. The *! r.e. set is denoted by W;. Subset is denoted by
C and C denotes proper subset. The quantifier V*° is interpreted as “all but finitely

many.” For a function f € R and n € IN, let f* = cod(f(0), f(1), ..., f(n)), where cod
denotes a computable and bijective mapping from the set IN* of all finite sequences
of natural numbers onto IN. Sometimes, for the sake of simplicity of notation, we
identify o € IN* with cod(«), for « a finite function.

Whenever appropriate we shall represent a recursive function by the sequence of

its values. For example, the sequence 021°2° denotes the function

0, if <2
fley=<¢1, if 2<z<5
2. otherwise

3

Next, we formalize the models of identification and classification mentioned in the
introduction. As in Gold (1967) we define an inductive inference machine (abbr. IIM)
to be an algorithmic device which works as follows: The IIM takes as its input larger
and larger initial segments of the graph of a function and it either requests the next
function value, or it first outputs a hypothesis, i.e., a name of a program, and then it
requests the next function value.

A classification machine (abbr. CM) takes as input the graph of a function (as
IIMs do) and it either requests the next function value, or it first outputs an integer
chosen ;from a finite set, and then it requests the next function value.

Let M be an IIM or a CM. Furthermore, let 2 and j be two consecutive hypotheses
produced by M. We say that M changes its mind, or synonymously, M performs a
mind change, iff © # j. When dealing with mind changes, it is technically much more
convenient to require the IIMs to behave as follows. Let f be a recursive function.
If M on f(0),..., f(n) outputs its first guess, then it has to output a hypothesis at
any subsequent step. It is easy to see that any IIM M may be straightforwardly
converted into an IIM M behaving as required such that both machines produce the
same sequence of mind changes.

We start with the formalization of learning. The following definition is due to
Gold (1967) (the ¢ = 0 case) and Barzdin (1971) and Blum and Blum (1975) (the

¢ = * case).

Definition 1. Let U C R and let ¢ € NU{x}. The class U is said to be learnable
with at most ¢ mind changes iff there is an IIM M such that for all f € U

(1) there is a j such that p; = f and M(f™) = j for almost alln € IN,

(2) M, when successively fed f(0), f(1), ... performs at most ¢ (¢ = * means at
most finitely many) mind changes, i.e., card({n|M(f") # M(f"t")}) <ec.

If U can be learned by an IIM M with at most ¢ mind changes, then we write
U € EX.(M). The class of all sets of recursive functions that are learnable with at

most ¢ mind changes is denoted by EX., an abbreviation for ezplains as a program
for f can be regarded as an explanation of the set of examples constituting the graph
of f (cf. Case and Smith (1983)). If U can be learned with 0 mind changes, then we
also say that U is finitely learnable. Moreover, we set F'IN =4 EXy. If ¢ = *, then
we usually omit the lower index and simply say U can be learned.

Next, we formalize classification of finitely many sets.

Definition 2. Let Sy, ..., 5,1 CR and let S = SqU ... USy_q. Furthermore, let
c € NU{*}. Then (So, ..., Sk—1) is said to be classifiable with at most ¢ mind changes
iff there is a CM M such that for all f € S

(1) for all n € IN, whenever M, on input f*, outpuls a hypothesis j, then j €
{0, ...,k =1},

(2) there is a j such that f € S; and M(f") = j for almost all n € IN,

(3) M, when successively fed f(0), f(1), ... performs at most ¢ (¢ = * means at
most finitely many) mind changes, i.e., card({n|M(f™) # M(f"")}) <ec.

If (So, ..., Sk—1) is classified by a CM with at most ¢ mind changes, then we write
(Soy...y Sk—1) € CLE(M). By CLj, we denote the collection of all k—tuples of sets that
are classifiable with at most ¢ mind changes, i.e.,

CLE = {(Sg, ., Se—1)| IOM M [(So, ..., Si_t) € CLE(M)]}.

Moreover, we set C'L° =45 Upso C'Lg. If ¢ = #, then we usually omit the upper index,
and say simply that (So, ..., S_k_l) is classifiable. Furthermore, if ¢ = 0, then we also
say that (S, ..., Sk—1) is finitely classifiable, and set FC Ly =4 CLY. In other words,
a k—tuple (So, ..., Sx_1) is finitely classifiable if M’s first guess is always a correct one.
Finally, we set FCOL =g Upsy FCLy.

In the definition above requirement (1) specifies the set of allowed hypotheses.
Clearly, any guess not contained in {0,...,k — 1} cannot be correct. Hence, it is only
natural to restrict the hypothesis space to the set {0,...,k — 1}. Nevertheless, this
requirement does not restrict the capabilities of CMs. This can be seen as follows.
Suppose we are given a CM M classifying some k-tuple (So, ..., Sk_1) of sets that
uses the set IN as its hypothesis space. Then M may be converted into a CM M
satisfying requirement (1) such that (S, ..., Sx—1) € CL;C(M'). On any input, the CM
M simply simulates M. If M outputs a guess from {0,...,k — 1} then M behaves
thus. Otherwise, M suppresses M’s output and requests the next input. It is easy to
prove that CL{(M) = CL%(AA/[). Consequently, when dealing with classification, class
preserveness can be realized without loss of generality. On the other hand, looking at
[IMs the situation changes considerably. The analog of requirement (1) reads as “for
all f € U, all n € IN, whenever M on input f” outputs a hypothesis j, then ¢, € U.”
However, the demand to work class preservingly does seriously restrict the learning

power of IIMs (cf. Jantke and Beick (1981)).

4

In the next definition we consider the situation that the sets Sy, ..., Sp_; are not
necessarily disjoint. Looking at potential applications, it might be highly desirable
not to obtain only one index of a set the target function f belongs to, but the indices
of all those sets that contain f. For example, consider the case of automated medical
diagnosis. In this case, we would certainly desire to be aware of all the diseases that
manifest the observed symptoms. In our formalism, each disease is set 5; and the
functions to be classified map symptoms to present or not present.

Definition 3. Let Sgy,...,5,_1 C R, and let S = Sy U ... U S,_;. Furthermore,
let ALL = {0,....k —1}. Then (So, ..., Sk—1) is said to be multi—classifiable iff there
is a CM M such that for all f € S

(1) for alln € IN, whenever M, on input ", outputs a hypothesis HYP, then HYP
C ALL,

(2) there is a non-empty set SUB C ALL such that

(a) M(f")= SUB for almost all n,
(b) f€S; forall j€ SUB,
(¢) f &S, foralme ALL\SUB.

If (So, ---, Sk—1) is multi-classified by a CM, then we write (g, ..., Sx—1) € Multi-
CLg(M). By Multi-C'Ly we denote the collection of all k-tuples of sets that are
multi—classifiable. Furthermore, we set Multi-C'L = U, Multi-C Ly.

Finally, we introduce consistent classification. The main intention is as follows.
Since potential users of a CM M never know whether M has successfully finished its
classification task, they might want to be sure that the actual hypotheses they receive
do correctly reflect the information the CM has been fed with.

Definition 4. Let Sy, ..., Sp_1 € R and let S = SoU ... USk_y. Then (So, ..., Sk—1)
is said to be consistently classifiable iff there is a CM M such that

(1) (So, .., Sg_1) € CLy(M),

(2) forall f €S, and for all n,i € IN, if M(f™) =i, then there must be a function
g € 5; such that f and g coincide up to n.

If (So, .., Sk—1) is consistently classifiable by a CM M then we write (So, ..., Sk—1) €
Cons—C Ly(M). By Cons—CLj, we denote the collection of all k—tuples of sets that
are consistently classifiable. Finally, we set Cons—CL =5 U5y Cons—CLy.

3. Classification of Predicates versus Classification of Ar-
bitrary Functions

In this section we compare the classification of {0,1} valued functions with the
classification of functions in general. Looking at learning there are several results
establishing major differences between the learnability of classes of predicates and
the inferability of arbitrary classes of recursive functions (cf. Blum and Blum (1975),
Zeugmann (1983, 1988), Osherson, Stob and Weinstein (1986)). Moreover, Freivalds,
Kinber and Wiehagen (1992) discovered that consistent learning of predicates consid-
erably differs from consistent identification of arbitrary recursive functions. Hence,
it is only natural to ask whether there are differences between the classification of
predicates and arbitrary recursive functions.

Clearly, if a collection of sets of {0,1} valued functions is classifiable, then it is
classifiable as a collection of sets of arbitrary recursive functions. To consider the
converse direction, we need the following notation. Let S C R; then we use p(S5) to
denote the restriction of S to predicates, i.e., p(S) = SN Roy.

Theorem 1. There is a collection of pairwise disjoint sets S, 51,59 such that

(1) R= 50U 5, USs,
(2) (So,51,52) ¢ CL,
(3) (p(So),p(S1), p(S2)) € CL3.

Proof. The desired splitting of R is defined as follows. Let So = {f|f € R, range f
is infinite}, S; = {f|f € R, range f is finite, Ya[f(z) = max range f — f(z + 1) #
f()]}, and Sy = R\ (So U Sy). Obviously, R = Sy U Sy U S, and Sy, Sy, and S, are
pairwise disjoint. It remains to show that assertions (2) and (3) are fulfilled.

C]azm 1 (‘§07SI) ;SQ) ¢ CL
Suppose the converse, i.e., there is a CM M such that (Sp, S1,52) € CL3(M).

We continue with the definition of a recursive function f on which M fails. Define
f(0), f(1),... to be zero until the least k is found such that M, when successively
fed f(0),..., f(k), outputs its first hypothesis. Let j = M(f*). Now we distinguish

between the following cases.
Case 1. j=0or j = 1.
Then set f(k+1)=0.
Case 2. j = 2.
Then define f(k+1)=1.

We proceed inductively as follows. Let & be the largest element for which f is
already defined. Compute j = M(f*). We consider the following cases.

Case 1. j = 0. Then define f(k+ 1) = 0.

6

Case 2. j = 1.

Then set f(k+ 1) = max{f(y)ly < k}.

Case 3. j = 2.

Then define f(k + 1) = max{f(y)|ly <k} + 1.

Obviously, f is recursive. Therefore, there has to be j € {0,1,2} such that
M(f") = j for almost all n.

Case 1. j = 0.

Due to the definition of f we obtain that f(z) = 0 for almost all + € IN. Hence,
f has a finite range and therefore it does not belong to Sy, a contradiction.

Case 2. j = 1.

In accordance with our construction, range f is finite. However, f(z) = max{f(y)|
y € IN} for almost all 2 € IN. Therefore, M again misclassifies f.

Case 3. j = 2.

By definition of f, range f is infinite. Hence, f belongs to Sy and not to 5,.
Consequently, M again fails to correctly classify f.

This proves Claim 1.
Claim 2. (p(So), p(S1),p(S2)) € CL3.

In order to see this, first observe that p(Sp) = 0. Moreover, p(S;) = {f|f €
Ros, Valf() = 1 — f(z +1) = 0]} and p(S5) = {/1f € R, Jelf(x) = f(z +1) =
1]} U{0°}. Now it is easy to define a CM M’ witnessing (p(So), p(S1), p(S2)) € CL3.
The machine M’ initially conjectures “2” until (if ever) an input f(x) with f(z) =1
is received. This is the correct behavior on the constant zero function. If an input 1
is received, then the input is not the constant zero function, and M’ conjectures “1.”
M’ continues scanning its input looking for two consecutive inputs that are 1. If this
happens, then M’ changes its conjecture back to “2” and stops. X

The theorem has the following corollary.

Corollary 2. For anyn > 3 there is a collection of pairwise disjoint sets exhaust-
ing R that is not in C'L,, but the collection of their restrictions to predicates is in

CL,.

Proof. The idea is to divide 57 from the proof of Theorem 1 into n — 2 sets. These
are the sets of recursive functions with finite range where the largest element of the
range occurs at most once in a row, at most twice in a row, at most three times in a
row, etc. The proof of Theorem 1 is then easily extended. X

The latter results show that there might be interesting differences between the
classification of predicates and arbitrary functions. Later on, we shall point out some
more differences. In the next section we study the power of classification algorithms
with respect to the allowed number of mind changes.

4. Finite Classification versus Classification and Learn-
ability

Our next theorem states that even the classification of two sets might be too
complex to be done by a finitely working CM.

Theorem 3. There are pairwise disjoint sets So, S1 such that
(1) SO U Sl = RO,I;
(2) (So,5,) € CL\ FCL.

Proof. Let Sy be the class containing only the function 0°°. To immediately satisfy
(1) and (2) above, let S; = Ro1\5S0. A CM M that classifies (Sp, S1) initially outputs
“0” and then waits for a non zero input. When, and if, this input arrives, M changes

its mind to “1.” Clearly, (5o, S1) € CL(M).
Suppose by way of contradiction that M is a CM such that (S0, 51) € FC’L([\A{).

Then there must be an n such that M, on input 07, outputs “0” as its conjectured
classification. If not, then M fails to classify 0 as a member of Sy, a contradiction.
On the other hand, M outputs, when successively fed 071, the hypothesis “0” as its
first guess. Therefore, M cannot finitely distinguish 0 from 0"1°°. Consequently,
M fails to properly classify at least one of those functions. X

The above theorem has an easy extension to the following:

Theorem 4. For any k > 1 there are pairwise disjoint sets Sg,-- -, Sg_1 such that
(1) S() U Sl U---u Sk—l = R()’l,
(2) (So,S51,-++,Sk-1) € CL\ FCL.

Proof. Let k > 1 be arbitrarily fixed. For 0 < ¢ < k —1, 5; is the subset of Rg,
that contains only functions f such that the cardinality of the set {z|f(z) # 0} is
exactly 7. Moreover, we set Sp_1 = Rg1 \ (S U -+ U Sy_3). Clearly, (1) and (2)
above are satisfied. A CM M that classifies Sy, Sy, -+, S,_1 initially outputs “0”
and then reads input, counting the number of nonzero inputs. After a nonzero input
is observed, resulting in a total of j nonzero inputs, M outputs the minimum of

{J, k = 1}. Clearly, (So, S1,- -+, Sk=1) € CLi(M).

Suppose by way of contradiction that M’ is a CM such that (So, S1,-+, Sk-1) €
FCLy(M'). Asin Theorem 3, there must be an n such that M’, on input 0" produces
a conjecture “0.” Then M’ will improperly classify at least one of 0> or 0”10, X

In contrast to Theorem 4, it is possible to split Ry into disjoint, finitely classifiable
sets.

Theorem 5. For any k > 1 there are pairwise disjoint sets Sy, - -+, Sp_1 such that

(1) S() J---u Sk—l = R()’l,

(2) (So,--+,Sk_1) € FCL.

Proof. Let So = {f|f € Ros and f(0) = 0}. For 1 < < k, S; = {fI|f €
Rox, f(j) =1for 0 <j < ¢and f(z) =0}. Finally, Sp—1 = Ro1\(SoUS1U---USk_2).
Clearly, (1) and (2) above hold. A CM M that finitely classifies (S, S1,---, Sk-1)
starts by reading input until the values of f(0), f(1), ---, f(k —2) are all known. If
all of these values are 1, then output “k4 — 1” as the only conjecture. If not, then
output “s” where ¢ is the least number such that f(:) = 0. X

Next we compare finite classification and learnability. If a classification machine
outputs a hypothesis 2, then we know almost all about the corresponding set 5;, since
there are only finitely many sets Sp, ..., Sx_1. On the other hand, if an IIM outputs
a hypothesis z, then we know almost nothing about the corresponding function ;.
Hence, at first glance it seems much easier to disprove a CM than to fool an IIM.
However, the situation is much more subtle, as the following theorems show.

Theorem 6. For any Sy C Roy such that Sy € FIN, there is a Sy such that

Proof. Suppose Sqg C Ros and So € FIN. Since no set in F'/IN can contain
an accumulation point (cf. Freivalds and Wiehagen (1979)), there is a finite, {0,1}
valued, initial segment o such that no function in Ry, extending « is in Sy. Let
S1 = {a0>, al*}. Clearly, S; C Rg1. That Sy is in FIN is witnessed by a IIM that
“knows” «, waits for it to be seen as input, and then after seeing one more input
will be able to guess the correct function from the two choices. By the choice of «,
Son Sy =0. A CM M witnessing (Sp, 1) € FCL knows a. Let a = (ag, ...,).
Then M requests more and more inputs until it has seen (f(0),..., f(n)). In case
/™ = a it outputs “1” and “0” otherwise. Clearly, (So,S1) € FCLy(M).

The latter theorem allows the following interpretation. Any “easily” learnable
class can be completed to an “easily” classifiable pair. Thus, sometimes learning and
classification are not very distinct. On the other hand, we have the following:

Theorem 7. For any So C Roq such that So € FIN, there is a Sy such that
(1) Sl C RO,l;
(2) S1 ¢ EX,
(3) So N Sl = @,

(4) (So,51) € FCL.

Proof. Let a as in the proof of Theorem 6. Set 57 = {af|f € Ro1}. A CM
witnessing (Sp,51) € FCL may work as described in the proof of Theorem 6. It
remains to show that S; ¢ FX. Suppose the converse, i.e., there is an [IM M such
that S; € EX(M). Then any program for M can be used to construct an IIM M that
infers Ro; , a contradiction (cf. Gold (1965)). This can be seen as follows. On any
input f™, n € IN, the [IM M simulates M on input af™. Suppose j = M(af"). Then
M outputs a canonical program of the function n defined as follows: n(z) = @j(z+n)
for all z € IN. Clearly, n = f if and only if ¢; = af. On the other hand, since
S1 € EX(M), there is a j such that M(af") = j for almost all n. Consequently, M
learns f. X]

5. Bounding the Number of Mind Changes

For finite classification (FCL) a CM is not allowed to change its conjecture at
all. For standard classification (C'L) a CM is allowed to change its conjecture an
arbitrary finite number of times. The precise number of mind changes has not to be
determined in advance. In the study of inductive inference, a mind change hierarchy
was discovered by fixing in advance a particular number of mind changes that an
IIM was allowed to make (cf. Case and Smith (1983)). In the sequel we present a
hierarchy for classification based on a fixed number of allowed mind changes.

Theorem 8. For any k there are sets So, S1, - -+, Skt1 such that

(1) SOuslU"'USk-H ZRo,l,
(2) (So,-««,Sk1) € CLMN\ CLF.

Proof. Suppose k is given. For ¢ < k, let S; be the subset of Ry such that for any
f € S; the cardinality of {z|f(z) = 1} is exactly ¢. For example, So = {0°°}. Finally,
Skt1 = Roa \ (So U S1U---USy). Clearly, (1) above is satisfied.

A CM that witnesses (So,- -+, Sk41) € CL*! may work as follows: Let f be any
fixed predicate. The CM starts by conjecturing “0”. If the most recent conjecture
is “4,” ¢ < k and another datum f(z) that is 1 is observed as input, then the CM
conjectures “c +1.” When the CM produces a conjecture “:” it will constitute the st
change of conjecture. Clearly, the CM described above is the desired witness.

The proof is completed by showing that (Sp,---,Sk) € CL*. Suppose by way
of contradiction that M is a CM such that (So,---,S:) € CL*(M). A finite {0,1}
valued function is constructed in at most &+ 1 steps below. It will turn out that some
extension of this finite functions will be an f € Ry, that M cannot properly classify.
The finite initial segment constructed prior to step s is denoted by the string o*. By
way of initialization, o° is the empty string. An invariant over steps 0 < s < k is that

10

after step s has been completed, the number of occurrences of “1” in o**! is exactly

s+1

s and M, when successively fed ¢°7", will make exactly s conjectures.

Step 0: Look for the least n such that M on input 0" produces a conjecture.
If such an n is found, set o' = 0™ and go to Step 1. If no such n exists,
then M fails to correctly classify the everywhere zero function in Sp.

Step s, for 0 < s < k: Let o® be the initial segment already defined. Look
for the first pair (n,m) in the Cantor enumeration of IN x IN such that
M(c®) # M(0°0™10™). In other words, we seek for one more mind change
of M on some additional data 0™10". If such an m and n are found then
set 0°*t! = ¢°0™10" and go to Step s + 1 until s + 1 > k.

First we prove by induction the invariant that after step s has been completed,
the number of occurrences of “1” in o°t! is exactly s and M, when successively fed
ot will make exactly s conjectures. After Step 0 has been completed, ! has no
ones present. Moreover, M, on input !, outputs its first guess. Suppose inductively
that for s < k, after Step s has been completed, the number of occurrences of “1”7 in
o1l is exactly s and M, when successively fed o°t!, will make exactly s conjectures.
After Step s+ 1 is complete, exactly one more “1” has been added to the string o1,
and M has been forced to make one more mind change.

By the comments in Step 0, we know that Step 0 must be completed, as otherwise
M fails to classify the function 0. Suppose Step s < k is the last step completed.
Let fi = o110 and f, = 0°t'10°. By the invariant over stages, f; € S, and
f2 € Ss41. By the failure of Step s 4+ 1 to complete, M will classify both f; and f; as
in the same set, a contradiction.

To complete the proof, suppose Step k completes. Let f; = o*t10> and f, =
o"*110>®. By the invariant over stages, fi € Sy and fy € Si11. M will make its full
allotment of mind changes on the initial segment o**!. Hence, M will classify both
f1 and f, as in the same set, a contradiction. X

Moreover, it is also possible to prove a hierarchy in the number of mind changes
that is not related to the number of sets to be classified.

Theorem 9. For any ¢ € IN there exist pairwise disjoint sets So, 51 C Roq such
that (So, Sl) € CL;+1 \ CL;

Proof. Let ¢ € IN be arbitrarily fixed. Furthermore, let g be a {0,1} valued
recursive function satisfying

(1) for all 7 € IN, ¢g(¢,n) = 0 for almost all n € IN or g(¢,n) = 1 for almost all
n € IN,

(2) for all e € IN, card({n|n € IN, g(i,n) # g(t,n+1)}) < c+1,

11

(3) there is no recursive function A such that

(3.1) h(z,n) = g(z,n) for all « € IN and almost all n € IN,
(3.2) card({n|n € IN, h(z,n) # h(e,n+1)}) < cfor all € IN.

In other words, ¢ is a {0, 1} valued limiting recursive function that can be computed
with at most ¢4 1 mind changes but no limiting recursive function can compute the
limits of ¢ with at most ¢ mind changes. The existence of such function ¢ has been

proved by Gold (1965).

Now we define Sy, S; C Ry as follows: Sy = {0°1°]i € IN and g(i,n) =
0 for almost all n}, and Sp = {0°1°°]: € IN and g(i,n) = 1 for almost all n}.

By definition, So N S; = 0. A CM M witnessing (So,51) € C L5t first counts the
number of consecutive zeros until it receives the first 1, and outputs nothing. Then,
on any input 0°1" it computes and outputs g(¢,7 + n). In accordance with the choice
of function g it directly follows that (So, S1) € CL3*"(M). On the other hand, it is
easy to see that any CM M with (S0, 51) € C’LE(M’) may be used to design a program
for a recursive function h satisfying (3.1) and (3.2), a contradiction to the choice of
g. Hence, the theorem follows. X

6. Classification versus Multi—Classification and Consis-
tent Classification

In this section we compare the power of classification, multi—classification and
consistent classification. In particular, we are interested in learning whether or not
multi—classification or consistent classification is harder to achieve than ordinary one.
Since neither multi-classification nor consistent classification has been studied in the
framework presented here, our goal is twofold. First we are interested in general
results concerning the classification power of these models. Second, we ask whether
or not the results obtained extend to the classification of predicates.

Our next theorem compares multi—classification and ordinary classification in the
finite case.

Theorem 10. Multi-FCL, C FCL,

Proof. Let K be the halting set, i.e., K = {k|k € IN, ¢.(k) is defined}. We define
sets Sp, S as follows. Let S = {f|f € R and [f(0) € K or (f(0), f(1) € K)]} and
Si=A{f1f € Rand [f(1) € K or (£(0), f(1) € K)]}.

By definition, for any f € S, U S; we have f(0) € K or f(1) € K. Hence, a CM
witnessing (Sp,51) € FCL may work as follows. After having received both f(0)
and f(1) it tries to compute @;)(f(0)) and ¢sa)(f(1)). One of these computations
has to stop. In case the CM verifies f(0) € K, it outputs “0.” If the CM verifies
©5)(f(1)) is defined, then it outputs “1.” Clearly, (So,51) € FCL(M).

12

By way of contradiction assume that (5¢,S1) € Multi-FCL(M) for some CM M.
Then the halting set K is decidable by the following procedure.

On input z € IN the procedure chooses an arbitrary £ € K. Then it uses M to
finitely multi—classify f = kz0°°. The procedure feeds successively f(0), f(1),... to
M until M produces its hypothesis. If M outputs “0” then the procedure outputs
“2 ¢ K.” In case M’s output is “(0,1)” the procedure outputs “z € K.”

It remains to show that the procedure defined above does work correctly. First,
since f(0) € K, the function f belongs to Sy U S;. Hence, M must finitely multi-
classify f. Therefore, when fed f(0), f(1),... the CM M has to output a correct
hypothesis. The rest directly follows from the definition of Sy and Sy. X

Applying a simple coding technique, the proof of Theorem 10 directly yields the
following corollary.

Corollary 11. There are sets So,.51 C Roy such that (S, S1) € FCLy\ Multi-
FCL,.

Next we aim to characterize multi—classification in terms of standard classification.
For that purpose, we introduce the notion of a mosaic.

Let So,...; Sxg—1 CR and S = SoU ... USgp_y. Let ALL={0,....,k — 1} and SUB
C ALL. Then let Ssyp = Njesvp S; \ Uic arn\sup Si- Clearly, Ssyp is the set of all
f € S that belong to any of the classes 5;, 7 € SUB, and to none of the classes .5;,
i € ALL\SUB. Finally, let mosaic(So, ..., Sx—1) be the tuple of all sets Ssygp, where
SUB C ALL.

Obviously, mosaic(Sg, ..., Sx_1) is a 2F~tuple of pairwise disjoint sets the union of
which is S (cf. Figure 1). Note that some components of mosaic(Sy, ...5x—1) may be
empty.

So

Sl S 2

Figure 1: The mosaic 50, e 56, 57 of the sets Sy, Sy, 59, where §7 = {).

13

Finally, let mosaic(So, ..., Sg—1) = (Lo, ..., Tyx_y). Moreover, without loss of gener-
ality we assume that the T}’s, 0 < j < 2*¥ — 1, are ordered in such a way that from
the index j the corresponding set SUB can be computed such that Ssyp = T and
vice versa. Formally, this can be realized by a one-to-one mapping m from the set
of all subsets SUB of ALL onto the set {0,...2¥ — 1} such that for any SUB C ALL,
Ssup = Tm(suB)-

We have obtained the following characterization.

Theorem 12. For all k > 2 and all sets Sy, ..., Sp._1 C 'R we have:
(S0 -ees Sk—1) € Multi-C'L if and only if mosaic(So, ..., Sx—1) € C'L.

Proof. Necessity. Let (So, ..., Sx—1) € MultizCL(M). Let M be a CM such that
for any f € SoU ... U Sk and any n € IN, M(f") = m(M(f")). Clearly,
mosaic(So, ..., Sk—1) € CL(M).

Sufficiency. Let mosaic(Sy, ..., S¢—1) € CL(M) for some CM M. Furthermore,
let M be a CM such that for any f € SoU ... U Sk and any n € IN, M(f™) =
m~Y(M(f™)). Obviously, (So, ..., Sk—1) € Multi-C'L(M). X

Finally in this section we relate consistent classification to ordinary one.
Theorem 13. Cons-C'L C C'L

Proof. Let K be the halting set, i.e., K = {k|k € IN, (k) is defined}. First we
define two disjoint sets Sp, S splitting R such that (So, S1) € CL}\ Cons—C Ly. Let
So=A{fIf € R, f(0) € K} and S; = {f|f € R, f(0) & K}. Clearly, So N S; =0
and SoUS; = R. An CM M witnessing (5o, .51) € C Ly(M) may work as follows. On
any input f", f € R, n € IN the machine M tries to compute ©;o)(f(0)) within at
most n steps. If the computation of p0)(f(0)) stops within this time bound then M
outputs “0.” Otherwise, it conjectures “1.” Obviously, (So, S1) € CLy(M).

It remains to show that (Sp, S1) € Cons—C L. Suppose the converse, i.e., there is
a CM M that consistently classifies (Sp, S1). As we shall show, the existence of such
a CM implies the decidability of the halting set, a contradiction.

Claim. If (So, S1) € Cons—C L(M) then any program for M can be used to construct
effectively an algorithm that decides K .

The wanted algorithm A is defined as follows. On any input z € IN the algorithm A
uses M to classify consistently f = 2°°. More precisely, A simulates the computation
of M(f%), M(f"),... until M, when successively fed f(0), f(1),... outputs its first
guess j. If j =0, then A outputs “z € K.” In case j = 1 A outputs “2 ¢ K.”

Obviously, A is recursive. It remains to show that A works correctly. Suppose
J = 0. In accordance with the definition of consistent classification there has to be a
function g € Sy such that f and ¢ do coincide up to n, where n is the least number
such that M, when fed f" outputs its first conjecture. In particular, g(0) = f(0) = .
Hence, z € K and A behaves correctly. Finally, suppose 7 = 1. Again there has to
be a g € R such that g € Sy and ¢(0) = f(0) = z. Hence, z ¢ K.

14

This proves the claim and hence the theorem is demonstrated. X]

Corollary 14. There are sets So, S1 C Roa such that (5o, S1) € CL\ Cons—CL.
Proof. Let K be as above. We set Sy = {1°0®°|: € K} and S; = {1'0°|: € K}.

Then the same arguments as in the proof of Theorem 13 apply mutatis mutandis.
We omit the details. X

7. Classification of Languages

In this section first we examine the classification of the regular languages (cf. Lewis
and Papadimitriou (1981)). The regular languages can be modeled as predicates as
well. This is done by fixing an isomorphism between strings over the alphabet of the
regular language and the natural numbers. Then a (regular) language represented by
a {0, 1} valued function f is the set of strings that correspond to the natural numbers
in the set {z|f(z) = 1}. The details of this encoding will be suppressed as much
as possible without sacrificing clarity. By a positive example we mean a string that
corresponds to a value x such that f(z) = 1. Similarly, by a negative example we
mean a string that corresponds to a value « such that f(z) = 0.

Theorem 15. [t is impossible to classify an arbitrary language from positive and
negative examples as being either reqular or not reqular.

Proof. As a first step, we restate the theorem more formally. Let Sy be the class
of regular languages, i.e., the set of {0,1} valued functions that correspond to the
regular languages. Let S; be all the other languages, e.g. the rest of the {0, 1} valued
functions. We prove that (Sg, S1) € C'L,. Suppose by way of contradiction that M is
a CM such that (S5y,51) € CLy(M).

We construct a language L over the alphabet {a,b}, by specifying positive and
negative examples. For the sake of presentation we omit the corresponding encoding
into a {0, 1} valued function. Once a string is given as a positive (negative) example,
it can never late be given as a negative (positive) example. The least next example
is the example corresponding to the lexicographically least string that has not yet be
presented as either a positive or negative example.

The specification of L is initiated by declaring more and more least next examples
as negative until M, given the examples so far, produces a conjectured classification.
If M fails to produce a conjecture, then this initialization step will, ultimately, give
every string as a negative example. In this case, L is the empty language, which is
regular. Furthermore, M will fail to correctly classify L.

Let ¢ € {0,1} be the most recent conjecture produced by M after seeing all the
examples that have been determined so far. Based on the value of 7, new examples
are added to L, until (if ever) enough data is added to entice M to produce a new
conjecture.

15

If 2 = 0: Let = be the least next example. If x corresponds to a string of
the form a™b", for some n, then add this example as a positive example.
Otherwise, the example becomes a negative one.

If : = 1: Add the least next example as a negative example.

If the above procedure is successful in always convincing M to change its conjec-
tured classification, then M fails to classify L as either a regular language or not. If
M does eventually settle on a classification for L, then one of the two cases above
will add the the rest of the examples to L. In the first case, when M determines
that L is regular, L will end up being a finite variant of the language {a""|n € IN}
which is not regular. Since the regular languages are closed under finite variations, L
cannot be regular. Hence, M fails to correctly classify L. In the second case, when
M determines that L is not regular, L will end up being a finite language. Hence,
again, M fails to correctly classify L. X

By way of contrast with Theorem 15, it is possible to separate arbitrarily large
subsets of the regular languages ;from the rest.

Theorem 16. Let n be an arbitrary natural number. Let Sy be the set of all
reqular languages that are recognized by some k-state finite automaton, k < n. Let Sy

be all the languages not in Sy. Then (So, 51) € CL.

Proof. There are only finitely many £ state finite automata, & < n, over any given
alphabet. A CM that classifies (S, S1) initially conjectures “0” and only changes
to “1” when it observes that no automaton in the finite set of n-state automata is
consistent with the examples observed as input. X

Next we ask whether or not Theorem 16 may be generalized. Disregarding the
obvious direction to handle more complex cases of finite sets of languages we consider
the problem under what circumstances infinite sets of languages are separable from
the rest. As we have already seen, this is not always the case. Moreover, Theorem
15 allows a conclusion that is interesting in its own right. On the one hand, the
set of all regular languages is even reliably learnable on the set of all total functions
(cf. Blum and Blum (1975)). On the other hand, no algorithm that learns the set of
all regular languages can be converted into a classification machine as Theorem 15
shows. Hence, it is worth to ask for an explanation of that phenomenon.

Analyzing the regular languages ;from an algorithmic point of view yields that
they possess several favorable properties. First, the set of all regular languages is
recursively enumerable. Second, membership in the regular languages is uniformly
decidable. Finally, the regular languages possess several structural properties that
may be tested algorithmically. Nevertheless, they are not separable, even in the limit,
from the rest of all languages. This yields the conjecture that their unclassifiability
might be caused not by their algorithmic but their topological properties. Namely,
Jfrom a topological point of view the set of all regular languages is dense, i.e., it

16

consists only of accumulation points. As a consequence, there is no learning algorithm
inferring it that does not exceed any a priorily fixed number of allowed mind changes.
On the other hand, for any fixed n, the set of all regular languages acceptable by
some n-state finite automaton may be obviously inferred within an a priorily fixed
number of mind changes.

Therefore, we try to generalize Theorem 16 in the direction that any learning
algorithm not exceeding a number of mind changes fixed in advance may be converted
into a classification machine.

For that purpose we need some notation. Let ¥ be any fixed alphabet. A recur-
sively enumerable set £ = (L;);en of languages over ¥ is said to be an indexed family,
if all languages L; are non-empty, and there is an algorithm that uniformly decides
membership in L; for all j € IN and all strings s € ¥* (cf. Angluin (1980)). That
means £ = (L;);en is an indexed family iff there is a recursive function f such that
for all numbers 7 and all strings s € ¥* we have

. _ 1, if s = LJ‘,
1) = { 0, otherwise.

Assuming ¥* to be lexicographically ordered, we may describe £ by a sequence F =
(fi)jen of uniformly recursive predicates, where f;(s) = f(j,s) for all j € IN and all
s € ¥*. Moreover, in the sequel we identify 2" with the set of all {0,1} valued total
functions.

The inferability of indexed families has attracted a lot of attention in learning
theory (cf. Lange and Zeugmann (1992a), (1993) and the references therein). As it
turned out, when dealing with the inferability of indexed families the choice of the
hypothesis space is of importance. It may affect both, the learnability at all as well as
the efficiency (cf. Lange and Zeugmann (1992a), (1993)). In particular, not requiring
an IIM to learn within the given enumeration F = (f;);en may reduce the number of
necessary mind changes. Therefore, in all what follows we consider class preserving
learning, i.e., when inferring an indexed family F = (f;);en we allow any suitable
chosen hypothesis space G = (g;);en of uniformly recursive predicates such that any
predicate in F possesses a description in § and any hypothesis g; describes a language
from F, i.e., range(G) = range(F).

Now we are ready to present the next theorem.

Theorem 17. Let m € IN, m > 1, and let F be any indexed family over some
fized alphabet 33 that can be learned from positive and negative data with at most m
mind changes. Then there exists a partition of 2" into m+2 pairwise disjoint classes

Foy ooy Fna1 Such that

(2) (Fos e Frngr) € CL.

17

Proof. Let F € EXm(]\Af) w.r.t. a hypothesis space G. It is very suggestive to
define the wanted partition to be the sets of all {0,1} valued functions that are
inferred by M with exactly + mind changes, for 0 < ¢+ < m and F,,41 to be the
rest. However, before doing something similar there are some problems we have to
overcome in advance. The main difficulty we have to deal with is that we do not know
how M behaves on inputs f that do not belong to F. In particular, since we want
to partition the set of all total {0, 1} valued function it might even be that M is not
defined on these inputs. But even if it is, it might converge on functions not belonging
to F after having performed ¢ < m mind changes. We overcome these difficulties by
applying the characterization theorem of Lange and Zeugmann (1992a) (cf. Theorem
12). Applying this theorem we obtain a class preserving hypothesis space G = (g;)
and a total and consistently working IIM M such that F € EX,, (M) w.r.t. G. That
means, on any input f”, if M outputs a hypothesis j, then f(z) = g(z) for all z < n.
Moreover, membership in G is uniformly decidable. Now we can define the desired
partition as follows. For 0 < ¢ < m we set F; = {f|f can be learned by M with
exactly ¢ mind changes }, and define F, 11 = 25" \ Up<icm Fi-

It remains to prove that all stated properties are fulfilled.

Obviously, Fo, ..., Frg1 is a partition of 2*°. For the purpose to prove (1) we
first recall that any f € F is learned by M with at most m mind changes. Hence,
F C FyU...UF,. For the opposite direction suppose an f ¢ F but f € F; for
some ¢ € {0,...,m}. Consequently, M performs on input f(0), f(1),... exactly ¢ mind
changes and then it always outputs a hypothesis 7. Let ¢ = ¢g;. Taking into account
that M works consistently, we may conclude that M verifies f(z) = g(z) for all z € IN.
Hence, f = g, and therefore f € F since range(F) = range(G). This contradiction
proves (1).

It remains to define a CM M such that (Foy s Frug1) € CL(ZW). Let f € 2" and
n € IN. We set

M(f”) — “Simulate M when successively fed f(0),..., f(n). If M outputs a hypoth-
esis and has performed exactly ¢, 0 < 7 < m mind changes after having read
f(0), ..., f(n), then output “,” and request the next input.

Otherwise, output “m + 1,7 and request the next input.”

Arguing as above one easily proves that M classifies Fo, ..., Fng1- X

The latter theorem directly allows the following corollary.

Corollary 18. Let m > 1, and let F be any indexed family over some fized al-
phabet ¥ that can be learned from positive and negative data with at most m mind
changes. Then it is possible to classify an arbitrary language from positive and nega-
tive data as belonging to F or not.

Looking at all the results obtained above we see that we have always dealt with
complete information concerning the objects to be learned or classified. However, a

18

huge part of language learning theory is devoted to learning from positive data only.
Hence, it is only natural to consider classification of languages from positive data.
What we like to present at the end of this section is a short outlook into this setting.

Considering learning or classification from positive data requires some carefulness.
First of all, we have to deal with the order of information presentation. Clearly, we
cannot assume to receive the data in lexicographical order, since this would implicitly
deliver much more information than allowed. Consequently, one demands a CM or
IIM to learn on all sequences of positive data that eventually contain every string
from the language under consideration. More precisely, let L be a language and
t = sg, 51, Sq, ... an infinite sequence of strings from ¥* such that range(t) = {s; | k €
IN} = L. Then t is said to be a positive presentation for L or, synonymously, a text.
We define Text(L) to be the set of all texts for L. Moreover, let ¢ be a text and let
x € IN: then 7, denotes the initial segment of ¢ of length = 4+ 1. Note that we do not
require a text to be computable. Now we ask whether or not we may extend Theorem
17 to the case of learning from positive data. The answer is twofold. It is still possible
to transform a learning algorithm that works with a number of mind changes fixed a
priorily into a classification machine. Nevertheless, we conjecture that it is no longer
possible to partition 2*°. However, we still get a partition of the indexed family. For
the sake of readability we present the next theorem in terms of languages.

Theorem 19. Let m € IN and let L be any indexed family over some fixed alphabet
that can be learned from positive data with at most m mind changes. Then there exist
pairwise disjoint classes Ly, ..., L,, such that

(2) (Los.rr L) € CL.

Proof. Before defining the desired partition we introduce the notion of canonical
text that will be very helpful in proving the theorem.

Let £ be an indexed family and let L any of its languages. Moreover, let sy, s, ...
be the lexicographically ordered text of ¥*. The canonical text ¢ of L is obtained as
follows. Test sequentially whether s, € L for z = 1,2,3, ... until the first z is found
such that s, € L. Since L # () there must be at least one z fulfilling the test. Set
t1 = s,. We proceed inductively, z > 1:

tl"82+l“? if Szt €L
tx-{-l =

t.8, otherwise, where s is the last string in ¢,

By assumption, there is an [IM M and a class preserving space of hypothesis
G = (G})jen such that M learns any L € L from any text ¢ € Text(L) with at
most m mind changes. Now we can define the wanted partition of £ as follows: For
0<:<mweset L; ={L|L € L, L can be learned by M ;from its canonical text
with exactly ¢ mind changes }. Obviously, (1) is fulfilled. It remains to define a CM

19

M that classifies (Lo, -y L1,). The main problem we have to deal with is the following.
The CM M has to classify every L € £ from all texts ¢ € Text(L). Therefore, we
cannot simply simulate M and count the number of mind changes, since this number
may depend on the particular text the IIM is fed. Hence, our goal must be to simulate
M on the canonical text of the language we have to classify. However, for that purpose
we should know at least one of L’s indices in G.

But such an index will be constructed in the limit by the IIM M just on any text
t € Text(L). Hence the desired CM M works on arbitrary text ¢ € Text(L) as follows:
It simulates M on t,, € IN, until M will eventually converge. For any hypothesis
j produced by M on t, and hence also for the final and correct hypothesis, M then
simulates M on the initial segment ¢/ of the canonical text ¢/ of L((7;), counts the
number of mind changes and outputs it as its actual hypothesis for classification.

Now we formally define the CM M. Let L € £, ¢ € Text(L) and = € IN. We set:

M(tx) = “Compute j = M(t,).
Compute the number z of mind changes of M when successively fed .
If 2 < m, then output z and request the next input.
If 2 > m output nothing and request the next input.”

It remains to show that M correctly classifies all the languages jfrom £. Let
L e L,and 0 <: < m be such that L can be learned by M from its canonical text
with exactly ¢ mind changes, i.e., L € £;. Furthermore, let = be such that both

- J = M(ty4,) for all r € IN (hence L = L(G)),

- on #J the machine M performs exactly ¢ mind changes.

is fulfilled. Obviously, Ay(ty) = ¢ for all y > z. Hence, (Lo,...,L,) € CL(]W). X

8. Conclusions and Open Problems

We have studied the classification of {0,1} valued recursive functions, and simul-
taneously the classification of languages from positive and negative data. Moreover,
extending previous work by Wiehagen and Smith (1992) we introduced new models
of classification, i.e., classification with a bounded number of mind changes, multi-
classification and consistent classification. We related all these classification types one
to the other, thereby showing what they have in common and where the differences
are. However, there are several question that deserve further study.

First, it would be desirable to gain a deeper understanding under what circum-
stances the restriction of arbitrary recursive function classes to predicates is classifi-
able, provided the original function classes are not. Second, the impact of consistent

20

classification should be investigated in some more detail. Looking at potential appli-
cations there are several scenarios where consistent classification is preferable. Nev-
ertheless, as we have seen, this requirement might prevent one at all in successfully
designing a classification machine. Hence, it seems to be highly desirable to elaborate
sufficient and necessary conditions for consistent classification. Third, we would like
to suggest to deal with the characterization of all the classification types introduced.
Characterizations play an important role in learning theory (cf. e.g. Blum and Blum
(1975), Angluin (1980), Zeugmann (1983), Wiehagen (1991), Lange and Zeugmann
(1992b)). As it turned out, most of the characterizations obtained lead to a better
understanding into the problem how algorithms performing the learning process may
be designed. Hence, characterizing classification might yield a deeper insight into the
nature of classification. Moreover, this might help to gain a better understanding of
the complex relation between classification and learning.

Finally, we have mainly dealt with the classification of languages ;from positive
and negative data. Nevertheless, from the point of view of potential applications
classification from positive data deserves attention as well. We regard the last theorem
in the latter section as a starting point for further research in that direction. In
this context, Fulk’s (1990) results suggest interesting problems. In particular, Fulk
(1990) studied the impact of several demands on the learning power of IIMs, e.g.;
prudence, rearrangement independence or set—driveness. Since these requirements
reflect postulates of naturalness, it is worth to deal with their influence on the power

of CMs.

9. References
ANGLUIN, D. (1980), Inductive inference of formal languages from positive
data, Information and Control 45, 117 - 135.

ANGLUIN, D., AND SMmITH, C.H. (1983), Inductive inference: theory and meth-
ods, Computing Surveys 15, 237 - 269.

ANGLUIN, D., AND SMITH, C.H. (1987), Formal inductive inference, in “En-
cyclopedia of Artificial Intelligence” (St.C. Shapiro, Ed.), Vol. 1, pp. 409 - 418,
Wiley-Interscience Publication, New York.

BARZDIN. J. (1971), Complexity and frequency solution of some algorithmically
unsolvable problems, Doct. Diss., Novosibirsk, State University, (in Russian).

Brum, L., AND BLumMm, M. (1975), Toward a mathematical theory of inductive
inference, Information and Control 28, 122 - 155.

Casg, J., AND SmITH, C.H. (1983), Comparison of identification criteria for
machine inductive inference, Theoretical Computer Science 25, 193 - 220.

21

Dupa, R., AND HART, P. (1973), “Pattern Classification and Scene Analysis,”
Wiley-Interscience Publication, New York.

FrEIVALDS, R., KINBER, E.B., AND WIEHAGEN, R. (1992), Convergently
versus divergently incorrect hypotheses in inductive inference, GOSLER Report

05/92, January 1992, Fachbereich Mathematik und Informatik, TH Leipzig.

FuLk, M. (1990), Prudence and other restrictions in formal language learning,
Information and Computation 85,1 - 11.

FRrEIVALDS, R.V., AND WIEHAGEN, R. (1979), Inductive inference with ad-
ditional information, Journal of Information Processing and Cybernetics (EIK)
15,179 - 184.

GoLp, M.E. (1965), Limiting recursion, Journal of Symbolic Logic 30, 28 - 48.

GoLp, M.E. (1967), Language identification in the limit, Information and Con-
trol 10, 447 - 474.

JANTKE, K.P., AND BEICK, H.R. (1981). Combining postulates of naturalness
in inductive inference, Journal of Information Processing and Cybernetics (EIK)

17, 465 - 434.

LANGE, S., AND ZEUGMANN, T. (1992a), Learning recursive languages with
bounded mind changes, GOSLER-Report 16/92, FB Mathematik und Infor-
matik, TH Leipzig, September 1992.

LANGE, S., AND ZEUGMANN, T. (1992b), Types of monotonic language learn-
ing and their characterization, in “Proceedings 5th Annual ACM Workshop on
Computational Learning Theory,” Pittsburgh, pp. 377 - 390, ACM Press.

LANGE, S., AND ZEUGMANN, T. (1993), Language learning in dependence
on the space of hypotheses, in “Proceedings 6th Annual ACM Conference on
Computational Learning Theory,” Santa Cruz, pp. 127 - 136, ACM Press.

LEwIs, H., AND PAPADIMITRIOU, C. (1981), “Elements of the Theory of Com-
putation,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

MACHTEY, M., AND YOUNG, P. (1978), “An Introduction to the General
Theory of Algorithms,” North-Holland, New York.

MicHALSKI, R.S., CARBONELL, J.G., AND MITCHELL, T.M. (1983), “Ma-
chine Learning,” Tioga Publishing Co., Palo Alto, CA.

OSHERSON, D., STOB, M., AND WEINSTEIN, S. (1986), “Systems that Learn,
An Introduction to Learning Theory for Cognitive and Computer Scientists,”

MIT-Press, Cambridge, Massachusetts.

22

WIEHAGEN, R. (1991), A thesis in inductive inference, in “Proceedings First
International Workshop on Nonmonotonic and Inductive Logic,” Karlsruhe, De-
cember 1990, J.Dix, K.P. Jantke and P.H. Schmitt (Eds.), Lecture Notes in
Artificial Intelligence 543, pp. 184 - 207, Springer-Verlag.

WIEHAGEN, R., AND SMmITH, C. (1992), Classification versus generalization, in
“Proceedings bth Annual ACM Workshop on Computational Learning Theory,”
Pittsburgh, pp. 224 - 230, ACM Press, New York.

ZEUGMANN, T. (1983), A-posteriori characterizations in inductive inference of
recursive functions, Journal of Information Processing and Cybernetics (EIK)

19, 559 - 594.

ZEUGMANN, T. (1988), On the power of recursive optimizers, Theoretical Com-
puter Science 62, 289 - 310.

23

