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Abstract. Angluin (1980) showed that there is a consistent and con-
servative learner for the class of non-erasing pattern languages; however,
most of these learners are NP-hard. In the current work, the complexity
of consistent polynomial time learners for the class of non-erasing pat-
tern languages is revisited, with the goal to close one gap left by Angluin,
namely the question on what happens if the learner is not required to
output each time a consistent pattern of maximum possible length. It is
shown that consistent learners are non-uniformly W [1]-hard inside the
fixed-parameter hierarchy of Downey and Fellows (1999), and that there
is also a W [1]-complete such learner. Only when one requires that the
learner is in addition both, conservative and class-preserving, then one
can show that the learning task is NP-hard for certain alphabet-sizes.

1 Introduction

Angluin [1] introduced pattern languages as an example for an interesting class
that is learnable in the limit from text. A pattern π is a finite string over a finite
alphabet Σ and a countably infinite set X of variables, where Σ ∩X 6= ∅. The
language L(π) generated by π is the set of strings which can be obtained by
substituting each variable in the pattern by a non-empty string over Σ.

Allowing the empty string as a possible substitution was also studied, yielding
the erasing pattern languages (cf., e.g., [10, 12]) which are not learnable from
text [10]. So we follow Angluin [1] and allow only non-empty substitutions. Such
pattern languages are called non-erasing pattern languages.

We consider here the model of learning in the limit from text (see Section 3).
Our learners are required to be consistent and/or conservative (cf., e.g., [9, 15]).

In [1, 2] the class of all non-erasing pattern languages was shown to be learn-
able in the limit from text and an easy modification of her learning algorithm is
consistent and conservative (cf., e.g., [15]) but not polynomial-time computable
if P 6= NP (cf. [1], Theorem 3.6). Lange and Wiehagen [8] sacrificed the con-
sistency requirement and provided a polynomial time learner. Zeugmann [14]
? Supported in part by NUS grant numbers R146-000-114-112 and R252-000-420-112.
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studied the learning properties of their algorithm from a statistical perspective.
Various approaches to learn pattern languages followed [6, 11, 13].

Note that there is no pattern learner which outputs only consistent patterns
of maximum possible length unless P = NP (cf. [1]). So what happens if we drop
the maximum possible length condition? It is shown that the following holds:
– The existence of a polynomial-time consistent learner for the class of non-

erasing pattern languages is equivalent to the condition that CLIQUE is
non-uniformly fixed-parameter tractable, that is, W [1] ⊆ FPT n;

– If there is a polynomial-time consistent and conservative learner using a
hypothesis space whereHi = L(π) for an index i and a pattern π is decidable,
then CLIQUE is uniformly fixed-parameter tractable, i.e., W [1] ⊆ FPT .

There is an oracle A relative to which FPT = W [Poly] and P 6= NP. This result
gives some evidence that one cannot show that the existence of a polynomial time
consistent and class-preserving pattern language learner would imply P = NP.

In [1] the word problem of the pattern languages was shown to be in W [poly]
which is the highest class of the W -hierarchy [5] but the exact level of that
hierarchy was not located. Polynomial-time consistent and conservative class-
comprising learning algorithms for classes where the membership-problem is
uniformly polynomial-time computable and some mild other conditions hold
were provided in [3, 4]. Below we use the algorithm of [8] instead of the work
of [3, 4], but the algorithm of Theorem 4 can also be obtained by their methods.

2 The Complexity of the Pattern-Membership Problem

The uniform membership-problem {(π,w) | w ∈ L(π)} is NP -complete (cf. [1])
but the membership-problem for a fixed pattern was not checked. So we ask
what happens if the underlying numbering of all the pattern languages is not
the default-numbering but given in a different way. Then certain information
could be coded into the hypothesis space and the learner could gain power.

So it is adequate to look at the parameterised complexity (cf. [5]). A param-
eterised set A is in FPT iff there is a recursive function f and a polynomial p
such that the question whether (k, x) ∈ A can be decided in p(f(k) + |x|) time.

A parameterised set S is fixed-parameter many-one reducible to a parame-
terised set T (abbr. S ≤n

m T ) iff there is a polynomial p such that for each param-
eter k there is a parameter k′, a factor dk and a reduction ψk such that ψk trans-
lates every 〈x, k〉 in time dk ·p(k+ |x|) into 〈x′, k′〉 with 〈x, k〉 ∈ S ⇔ 〈x′, k′〉 ∈ T .
Moreover, S is strongly uniformly fixed-parameter many-one reducible to T (abbr.
S ≤s

m T ) iff there is a recursive function computing k′, the factor dk and a pro-
gram for ψk from k (cf. [5]). We write S ≡s

m T iff S ≤s
m T and T ≤s

m S.
Let PMO denote the membership problem of pattern languages with the

parameter k being the number of occurrences of variables in the pattern π, e.g.,
let π be such that one variable occurs twice and two other variables occur just
one time each in π, then k = 4. For CLIQUE the parameter is the size of the
clique requested. The complexity class W [1] can be characterized as those sets
which are strongly uniformly fixed-parameter many-one reducible to CLIQUE.
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Theorem 1. The problem PMO is W [1]-complete for strongly uniform fixed-
parameter many-one reducibility. In particular, PMO ≡s

m CLIQUE.

3 Learning Theory

First, we recall notions from learning theory and then apply Theorem 1 to it.
The source of information are texts. A text t is an infinite sequence eventually
containing all words of the target language L and possibly some pause symbols
but no non-members. The learner is fed incrementally growing initial segments
tn of t and computes a hypothesis from its input, say in, if it has seen precisely
the first n words of t. The hypotheses are interpreted with respect to a chosen
hypothesis space {Hi | i ∈ I}. The sequence (in)n∈N (N is the set of all natural
numbers) of all created hypotheses has to converge to an i ∈ I such that Hi = L.

A learner learns L from text if it learns L from all text for it. A learner learns
a class C with respect to a hypothesis space {Hi | i ∈ I} from text iff it learns
every language from C from text. This model is called learning in the limit from
text (cf. [7]). Since we consider this model only, we refer to it just as learning.

Our learners are also required to be consistent and conservative (cf. [1, 2]).
A learner M is consistent iff for every input tn it outputs an in such that
range (tn) ⊆ Hin ; if no such in exists, M outputs a special no-conjecture symbol.
We call M conservative iff for every two subsequent hypotheses in based on tn
and in+k based on tn+k, in 6= in+k, there is an x ∈ range (tn+k) with x /∈ Hin .

A hypothesis space {Hi | i ∈ I} is class-preserving (with respect to the
target class C) iff {Hi | i ∈ I} = C. We call {Hi | i ∈ I} class-comprising iff
{Hi | i ∈ I} ⊇ C. Every hypothesis space must be class-comprising; ideally it
should be class-preserving, but this restricts learnability sometimes (cf. [15]).

We relate our results to Angluin’s [1, 2] which are based on descriptive pat-
terns. By sample we mean range (tn). A pattern π is descriptive of a sample S
iff S ⊆ L(π) and for every pattern τ with S ⊆ L(τ), we must have L(τ) 6⊂ L(π).
Every learner producing on every input a descriptive pattern learns the class of
all non-erasing pattern languages (abbr. PAT) and there is an algorithm com-
puting on input any sample S a pattern that is descriptive of S (cf. [1, 2]). If
we require learnability with respect to a class-preserving hypothesis space this
is the only way to obtain a consistent and conservative learner for PAT.

Theorem 2. Let M be a consistent and conservative learner for PAT with re-
spect to a class-preserving hypothesis space. Then M must output in every step
a hypothesis that is descriptive for the content of the text seen so far.

Theorem 3. PAT has a consistent polynomial-time learner iff W [1] ⊆ FPT n.

The next result shows that for consistent and conservative learning with a min-
imum decidability requirement on the hypothesis space, polynomial-time learn-
ability becomes linked to the more restrictive condition W [1] ⊆ FPT .

Theorem 4. W [1] ⊆ FPT iff there is a consistent and conservative polynomial-
time learner for PAT which uses a hypothesis space {Hi | i ∈ I} such that
{(π, i) | L(π) = Hi} is decidable.
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Next, we use an infinite alphabet Σ, e.g., Σ could be N. Then it is NP -hard to
make a consistent and conservative learner using a class-preserving hypothesis
space. So the weakening from class-preserving to class-comprising hypotheses
spaces is an important ingredient for the general polynomial-time learners ob-
tained by [3, 4] for many uniformly polynomial-time decidable classes.

Theorem 5. Let Σ = {0, 1, 2, . . .}. Now P = NP iff there is a consistent and
conservative class-preserving polynomial-time learner for PAT over Σ.

The same result holds if one works with finite alphabets and the learner has to
learn the pattern plus the alphabet from the data. Then the learnability problem
uniform over finite alphabets is NP-complete.
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