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Abstract. Recent results supporting the usefulness of the normalized
compression distance for the task to classify genome sequences of virus
data are reported. Specifically, the problem to cluster the hemagglutinin
(HA) sequences of influenza virus data for the HA gene in dependence
on the host and subtype of the virus, and the classification of dengue
virus genome data with respect to their four serotypes are studied.
A comparison is made with respect to hierarchical and spectral clustering
via the kLine algorithm by Fischer and Poland (2004), respectively, and
with respect to the standard compressors bzlip, ppmd, and zlib.
Our results are very promising and show that one can obtain an (almost)
perfect clustering for all the problems studied.

1 Introduction

In many data mining applications the similarity between objects is of fundamen-
tal importance. Quite frequently, domain knowledge is used to define a suitable
domain-specific distance measure. As a consequence, many of the resulting algo-
rithms tend to have many parameters which have to be tuned. This is not only
difficult but also including the risk of being biased. Furthermore, it may make
it hard to verify the results obtained.

Recently, as a radically different approach, the paradigm of parameter-free
data mining has emerged (cf. Keogh et al. [12]). The main idea of parameter-free
data mining is the design of algorithms that have no parameters and that are
universally applicable in all areas. At first glance this may seem impossible. How
can an algorithm perform well if it is not based on extracting the important
features of the data and if we are not allowed to adjust these parameters? As
pointed out by Vitányi et al. [17], parameter free data mining is aiming at
scenarios where we are not interested in a certain similarity measure but in the
similarity between the objects themselves.
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The most promising approach to this paradigm uses Kolmogorov complexity
theory [14] as its basis. The key ingredient is the so-called normalized information
distance (NID) which was developed by various researchers during the past
decade in a series of steps (cf., e.g., [2, 13, 8]). The intuitive idea behind it is
as follows. If two objects are similar then there should be a simple description
of how to transform each one of them into the other one. And conversely, if all
descriptions for transforming each one of them into the other one are complex,
then the objects should be dissimilar. Then, the normalized information distance
between two strings x and y is defined as

NID(x,y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
, (1)

where K(x|y) is the length of the shortest program that outputs x on input y, and
K(x) is the length of the shortest program that outputs x on the empty input.
For the technical details of the NID, we refer the reader to Vitányi et al. [17].

To apply this idea to data mining tasks, standard compression algorithms
have to be invoked to approximate the Kolmogorov complexity K. This yields
the normalized compression distance (NCD) as approximation of the NID (cf.
Definition 1). The NCD has been successfully applied to a variety of data mining
problems (cf., e.g., [8, 12, 5, 6, 1]).

In this paper, we report the usefulness of the NCD for three classification
problems for virus data. One task is to cluster the hemagglutinin (HA) sequences
of influenza virus data for the HA gene in dependence on the subtype, where all
data originate from the same host. The second task is the same classification but
in dependence on the subtype and host of the virus. The third problem deals
with the classification of dengue virus genome data with respect to their four
serotypes.

2 Background and Theory

The definition of the NID depends on the function K which is uncomputable.
Thus, the NID is uncomputable, too. Using a real-word compressor, one can
approximate the NID by the NCD (cf. Definition 1). Again, we omit details and
refer the reader to [17].

Definition 1. The normalized compression distance between two strings x and y

is defined as

NCD(x,y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
,

where C is any given data compressor.

Common data compressors are bzlib, ppmd, zlib, etc3. Note that the com-
pressor C has to be computable and normal in order to make the NCD a useful
approximation. This can be stated as follows.
3 We use here the same naming convention as in the CompLearn Toolkit [4]. Essen-

tially, these compressors coincide with bzip2, ppmz, and gzip.
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Definition 2 ([17]). A compressor C is said to be normal if it satisfies the
following axioms for all strings x, y, z and the empty string λ.

(1) C(xx) = C(x) and C(λ) = 0; (identity)
(2) C(xy) > C(x); (monotonicity)
(3) C(xy) = C(yx); (symmetry)
(4) C(xy) + C(z) 6 C(xz) + C(yz); (distributivity)

up to an additive O(log n) term, with n the maximal binary length of a string
involved in the (in)equality concerned.

Good real-world compressors like bzlib, ppmd, and zlib turned out to be
normal for our data, and we used these compressors for our experiments. We used
the ncd function from the CompLearn Toolkit (cf. [4]) to compute the distance
matrix D =

(
dncd(x,y)

)
x,y∈X

, where X = (x1, . . . , xn) is the relevant data list.
To cluster the data we used hierarchical clustering and spectral clustering via

kLines (cf. Fischer and Poland [9]). For a detailed description of the algorithms
applied, we refer the reader to our paper [11].

3 Clustering Virus Data – Experiments and Results

The first paper using the NCD to analyze virus data was Cilibrasi and Vitányi [7].
In this paper the authors used the SARS TOR2 draft genome assembly 120403
from Canada’s Michael Smith Genome Sciences Centre and compared it to other
viruses by using the NCDand the bzlib compressor. After applying their quartet
tree heuristic for hierarchical clustering, they obtained a ternary tree showing
relations very similar to those shown in the definitive tree based on medical-
macrobiological genomics analysis which was obtained later (see [7] for details).

Our first group of experiments dealt with influenza viruses, too. We have been
interested in learning whether or not specific gene data for the hemagglutinin
of influenza viruses are correctly classifiable by using the concept of the NCD.
For any relevant background concerning the biological aspects of the influenza
viruses we refer the reader to Palese and Shaw [16] and Wright et al. [18].

The family of Orthomyxoviridae is defined by viruses that have a negative-
sense, single-stranded, and segmented RNA genome. There are five different
genera in the family of Orthomyxoviridae: the influenza viruses A, B and C;
Thogotovirus; and Isavirus. Influenza A viruses have a complex structure and
possess a lipid membrane derived from the host cell.

We were only interested in their HA gene, since HA is the major target of
antibodies that neutralize viral infectivity, and responsible for binding the virus
to the cell it infects. In [11] we considered all 16 subtypes of the HA and collected
a data set from the National Center for Biotechnology Information (NCBI) [15]
containing a total of 106 sequences (all taken from viruses hosted by their the
natural host) which could be (almost) successfully clustered into the relevant 16
subtypes of the HA. So, the HA subtype is the similarity between the different
sequences.
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Next, we shortly describe experiments dealing with influenza viruses hosted
by duck and human. Note that H1N1 is a subtype of influenza A and the most
common cause of influenza in humans. In June 2009, the World Health Orga-
nization declared that a new strain of swine origin H1N1 was responsible for
the 2009 flu pandemic. Usually birds can pass avian influenza viruses to swines,
where the viruses have to mutate so that they can circulate in the swine popu-
lation. Then a new strain emerges which can be passed to humans or to other
hosts. Of course, in order to become pandemic, the viruses may mutate again.

If one considers sequences for the HA gene originating from different hosts, it
is only natural to ask which property is more “similar,” the host or the subtype.
For answering this question we chose 32 sequences having different HA subtypes
that originated from both the duck and human host (again from NCBI). For a
complete list of the data description we refer the reader to

http://www-alg.ist.hokudai.ac.jp/nhuman vs duck.html .
For the ease of presentation, below we use the following abbreviation for the

data entries. Instead of giving the full description, e.g.,

>gi|218664152|gb|CY036815| /Human/4 (HA)/H2N2/South Korea/1968/// In-
fluenza A virus (A/Korea/426/1968(H2N2)) segment 4, complete sequence

we refer to this datum as hH2N2CY036815 for short. The h stands for human
here, and we use d if the host is the duck.

Each datum consists of a sequence of roughly 1800 letters from the alphabet
{A, T , G, C}, e.g., looking such as

AAAAGCAGGGGAATTTCACAATTAAA . . . TGTATATAATTAGCAAA.
The results obtained by using the zlib and bzlib compressor and then

applying hierarchical clustering are shown in Figure 1 and 2, respectively.
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Fig. 1. Classification of HA sequences
hosted by human and duck; compr.: zlib
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Fig. 2. Classification of HA sequences
hosted by human and duck; compr.: bzip
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As these clustering results show, for this data set the similarity between
subtypes is stronger than the similarity between the hosts. We could confirm
this outcome by using spectral clustering, where we used two clusters.

3.1 Clustering the NCD for Dengue Virus Data

Dengue virus is an RNA virus that causes dengue fever, one of the most impor-
tant emerging diseases, infecting 100 million people annually in more than one
hundred countries around the world [3]. The genome of dengue virus consists of
nucleotides approximately 11 KB long, and 10 viral proteins are encoded in the
genome. Dengue virus exhibits extensive genetic diversity, and there exist four
antigenically distinct serologic types (1 through 4). It is known that severe cases,
called dengue hemorrhagic fever / dengue shock syndrome, occur in patients who
have secondary infections by a different serotype from previous infections [10].
Around 250,000 cases of dengue hemorrhagic fever / dengue shock syndrome
are annually reported. Nucleotide sequences of all four dengue virus groups have
been determined, and the rapid development of molecular biology over the last
two decades is accelerating the accumulation of genomic data on the pathogen.

So, it is only natural to ask whether or not we can correctly cluster dengue
virus genome data with respect to their four serotypes. To answer this question,
we used 80 sequences (20 for each serotype) from NCBI ([15]). For a complete
description of the data used, please see

http://www-alg.ist.hokudai.ac.jp/Dengue-Data.html .
Then, we computed the distance matrix as described above by applying the

standard compressors bzlib, ppmd, and zlib. It should be noted that the dengue
virus genome data are much larger than the influenza virus data, i.e., 10.6 KB
versus 1.7 KB. Our hierarchical clustering was perfect for the compressors ppmd,
and zlib (see Figure 3 for an example), but not for bzlib. Hierarchically clus-
tering the distance matrix computed via the bzlib compressor gave 11 errors.
On the other hand, spectral clustering delivered correct results in all three cases.

Moreover, we repeated these experiments with a non-balanced data set, see
http://www-alg.ist.hokudai.ac.jp/imbalanced-dengue.html ,

where we used 44 sequences of type 1 and 20 sequences of type 2, 3, and 4.
The results have been almost the same, i.e., hierarchical clustering and spec-

tral clustering have been correct for the compressors ppmd, and zlib.
Using the bzlib compressor and spectral clustering as described in [11] pro-

duced two errors. However, by using a different kernel width for transforming
the distance matrix in a similarity matrix (i.e., 1.23), the clustering was again
perfect. Moreover, in contrast to the experiments performed with the influenza
virus data, the kernel width was much less influential.

To summarize, our results are very promising and show that one can obtain
an (almost) perfect clustering for all the problems studied. Note that we do not
have reported the running time here, since it was in the range of several seconds.
The clustering algorithms used in our experiments will nicely scale up to the
amount of data for for which we can efficiently compute the distance matrix.
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Fig. 3. Classification of dengue genome sequences; compr. zlib


