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Abstract. Austinat, Diekert, Hertrampf, and Petersen [2] proved that
every language L that is (m, n)-recognizable by a deterministic frequency
automaton such that m > n/2 can be recognized by a deterministic finite
automaton as well. First, the size of deterministic frequency automata
and of deterministic finite automata recognizing the same language is
compared. Then approximations of a language are considered, where
a language L′ is called an approximation of a language L if L′ differs
from L in only a finite number of strings. We prove that if a deterministic
frequency automaton has k states and (m, n)-recognizes a language L,
where m > n/2, then there is a language L′ approximating L such that L′

can be recognized by a deterministic finite automaton with no more
than k states.
Austinat et al. [2] also proved that every language L over a single-letter
alphabet that is (1, n)-recognizable by a deterministic frequency automa-
ton can be recognized by a deterministic finite automaton. For languages
over a single-letter alphabet we show that if a deterministic frequency
automaton has k states and (1, n)-recognizes a language L then there is
a language L′ approximating L such that L′ can be recognized by a de-
terministic finite automaton with no more that k states. However, there
are approximations such that our bound is much higher, i.e., k!.

1 Introduction

The notion of frequency computation was introduced by Rose [18] as an attempt
to have an absolutely deterministic mechanism with properties similar to prob-
abilistic algorithms. The definition was as follows. Let N = {0, 1, 2, . . .} denote
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the set of all natural numbers. A function f : N → N is (m,n)-computable, where
1 ≤ m ≤ n, m,n ∈ N, iff there exists a recursive function R : Nn → Nn such
that, for all n-tuples (x1, · · · , xn) ∈ Nn of mutually distinct natural numbers,

card{i | (R(x1, · · · , xn))i = f(xi) , 1 ≤ i ≤ n} ≥ m ,

where (R(x1, · · · , xn))i denotes the ith component of R(x1, · · · , xn).
McNaughton [16] cites in his survey a problem (posed by Myhill) whether f

has to be recursive if m is close to n. This problem was answered by Trakht-
enbrot [20] by showing that f is recursive whenever 2m > n. On the other
hand, Trakhtenbrot [20] proved that, if 2m = n then nonrecursive functions
can be (m,n)-computed. Kinber [14, 13] extended the research by considering
frequency enumeration of sets. The class of (m,n)-computable sets equals the
class of recursive sets if and only if 2m > n. The notion of frequency computa-
tion can be extended to other models of computation. Frequency computation
in polynomial time was discussed in full detail by Hinrichs and Wechsung [11].

For resource bounded computations, the behavior of frequency computabil-
ity is completely different: for example, whenever n′ −m′ > n−m, it is known
that under any reasonable resource bound there are sets which are (m′, n′)-
computable, but not (m,n)-computable. However, scaling down to finite au-
tomata, the analogue of Trakhtenbrot’s [20] result holds again: the class of lan-
guages (m,n)-recognizable by deterministic frequency automata equals the class
of regular languages if and only if 2m > n (cf. Austinat et al. [2]). Conversely,
as shown by Austinat et al. [2], for 2m ≤ n, the class of languages (m,n)-
recognizable by deterministic frequency automata is uncountable for a two-letter
alphabet. A stronger result concerning sets separable by finite automata was
claimed by Kinber [13], and this result would imply the results mentioned above
as a corollary. However, as shown by Tantau [19], who gave a counter-example,
Kinber’s [13] Theorem 3 does not hold.

When restricted to a one-letter alphabet, then every (m,n)-recognizable lan-
guage is regular. This was shown by Kinber [14] and also by Austinat et al. [2].

Frequency computations became increasingly popular when relations between
frequency computation and computation with a small number of queries was
discovered [1, 2, 3, 4, 5, 8, 10, 15].

2 Deterministic Frequency Automata

For finite automata the definition of frequency computation is not so obvious.
First, let us fix the necessary notations. We assume familiarity with finite au-
tomata theory, cf., e.g., Hopcroft and Ullman [12]. Let Σ be any finite alphabet,
and let Σ∗ be the free monoid over Σ. Every subset L ⊆ Σ∗ is said to be a
language. The elements of Σ∗ are called strings, and we use |x| to denote the
length of a string x ∈ Σ∗. By χL : Σ∗ → B, where B = {0, 1}, we denote the
characteristic function of L, i.e., for all x ∈ Σ∗ we set

χL(x) =
{

1, if x ∈ L ;
0, if x /∈ L .
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To define deterministic frequency automata we extend the notion of a determin-
istic finite automaton as follows (cf. Austinat et al. [2]).

Let A = [Q,Σ,#, δ, q0, τ, n], where n ∈ N, n ≥ 1, is a number, Q is a finite set
of states, q0 is the initial state, Σ is a finite alphabet and # is a new symbol such
that # /∈ Σ. The mapping δ : Q×(Σ∪{#})n → Q is the transition function, and
we call τ : Q → Bn the type of state. The type of state is used for the output.
We refer to A as deterministic frequency automaton.

Next, we formally describe the behavior of a deterministic frequency automa-
ton A. Let n ∈ N, n ≥ 1, and let x = (x1, . . . , xn) ∈ (Σ∗)n be an input vector.
We define |x| = max{|xi| | 1 ≤ i ≤ n}, and q ◦ x = δ∗(q, (x1#`1 , . . . , xn#`n)),
where δ∗ : Q× ((Σ ∪ {#})n)∗ is the usual extension of δ on n-tuples of strings,
and `i = |x| − |xi| for all 1 ≤ i ≤ n. Then the output of A is defined to be the
type τ(q0 ◦ x). We refer to such an automaton as n-DFA for short.

A language L ⊆ Σ∗ is said to be (m,n)-recognized by an n-DFA A iff for each
n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦x) and
(χL(x1), . . . , χL(xn)) coincide on at least m components. A language L ⊆ Σ∗ is
called (m,n)-recognizable iff there is an n-DFA A that (m,n)-recognizes L.

Frequency computation is not much similar to probabilistic computation.
The advantages of probabilistic algorithms over deterministic ones are based on
the effect that at some moments the algorithm has a choice of several possible
continuations of the computation process but there is no information which one
suits better. For example, if the language is L3,5 = {1n | n is divisible by 3 or 5}
then a probabilistic algorithm has a choice: whether to test divisibility by 3 or
divisibility by 5.

Frequency algorithms have no such option. Nonetheless, frequency automata
can have size complexity advantages over deterministic automata as well. To see
this, consider the language L2015 ⊆ {1}∗ defined as

L2015 = {1n | n = 2015} . (1)

A deterministic finite automaton recognizing this language needs to have 2016
states. On the other hand, there is a 1-state 100-DFA A that (99, 100)-recognizes
the language L2015. The 100-DFA A rejects all 100-tuples, i.e., it always outputs
τ(q0 ◦ x) = (b1, . . . , b100) ∈ B100, where bi = 0 for all i = 1, . . . , 100. But
nonetheless A does (99, 100)-recognize the language L2015, since it can only be
wrong on at most one of the 100 strings in any 100-tuple given as input.

This idea can be easily extended. Consider L2015,2158 ⊆ {1}∗ defined as

L2015,2158 = {1n | n = 2015 or n = 2158} . (2)

Then there exists a 1-state 100-DFA A such that A does (98, 100)-recognize the
language L2015,2158. Again, A rejects all 100-tuples, but nonetheless recognizes
the language L2015,2158.

Maybe, the only advantage of deterministic frequency automata over de-
terministic finite automata is to save size by producing errors on a constant
number of fixed input words? Not at all, some nonregular and even nonrecursive
languages can be recognized by deterministic frequency automata.
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Theorem 1 (Austinat et al. [2]). There exists a nonrecursive language that
is (1, 2)-recognizable by a 2-DFA.

3 Size Complexity

In this section we study the size complexity of deterministic frequency automata
and compare it to the size of ordinary deterministic automata recognizing the
same language or an approximation of it.

First, we extend the example shown in (1). This directly yields the follow-
ing theorem showing that the advantage of deterministic frequency automata
with respect to their size complexity over deterministic finite automata can be
arbitrarily large.

Theorem 2. For every s ∈ N, s ≥ 1, there is a language Ls such that, for every
n ≥ 1 there is an n-DFA A having one state that (n − 1, n)-recognizes Ls, but
every deterministic finite automaton recognizing Ls needs at least s states.

Proof. Let s ≥ 1 be arbitrarily fixed and let Ls be any language defined as

Ls = {1m | m = m0} ,

where m0 is a number such that every deterministic finite automaton needs at
least s states to recognize the language Ls. The desired n-DFA A can then
be easily defined such that Q = {q0} and such that for all n-tuples of strings
x ∈ ({1}∗)n the mapping τ(q0 ◦ x) returns the n-tuple containing only zeros.
Hence, Ls is (n− 1, n)-recognized by A, since A rejects all input strings. But an
error can happen only once, i.e., if 1m0 is part of the input. ut

Clearly, Theorem 2 can be easily generalized along the lines of the example
shown in (2). So the more interesting question is whether or not there is always
a (huge) gap in the size of deterministic frequency automata and determinis-
tic finite automata provided they accept roughly the same language. Here by
“roughly” we mean that we allow the deterministic finite automaton to accept
an approximation of the language accepted by the corresponding deterministic
frequency automaton.

Austinat et al. [2] proved that in the case m > n/2 every language (m,n)-
recognized by an n-DFA is also recognizable by a deterministic finite automaton.
There were no size estimates of the deterministic frequency automata and the
deterministic finite automata, respectively, in [2] but a careful optimization of
the construction given in [2] proves the following theorem.

Theorem 3. Let any pair (m,n), where m > n/2, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L which is (m,n)-
recognized by the n-DFA A then there exists a language L′ differing from L only
in a finite number of strings such that L′ can be recognized by a deterministic
finite automaton with 2k+3 states.



On the Size Complexity of Deterministic Frequency Automata 291

It is well-known that for nondeterministic finite automata and probabilistic
1-way automata the size gap to deterministic finite automata recognizing the
same language is exponential [17, 6, 7, 9]. But now we consider approximations
and compare n-DFA and deterministic finite automata. Our next theorem shows
that the gap expressed in Theorem 3 between the sizes of deterministic frequency
automata and deterministic finite automata is not necessary provided |Σ| ≥ 2.

Theorem 4. Let any pair (m,n), where m > n/2, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L which is (m,n)-
recognized by the n-DFA A then there exists a language L′ differing from L only
in a finite number of strings such that L′ can be recognized by a deterministic
finite automaton with k states.

Proof. This proof is nonconstructive. This means that we do not present an
effective construction how to transform a program for (m,n)-recognition of a
language into a program for deterministic recognition of the same language.
Instead we show that such a transformation can be done using a finite amount of
additional information and we show that such an additional information cannot
fail to exist but we do not show how to obtain such additional information
effectively. Since |Σ| ≥ 2, we assume without loss of generality that {0, 1} ⊆ Σ.

By [α1, α2, · · · , αk/β1, β2, · · · , βk], where αi, βi ∈ {0, 1}, 1 ≤ i ≤ k, we denote
the set of all strings x ∈ Σ∗ such that

χL(xα1) = β1 ,

χL(xα1α2) = β2 ,

· · ·
χL(xα1α2 · · ·αk) = βk .

We start to describe a noneffective “construction” of a tree denoted by S. This
tree is defined inductively. In principle, the tree might be infinite but we prove
below that the “construction” results in a finite tree. We will use the resulting
tree as the finite additional information about the given frequency automaton.

– There is a single vertex of the zero level in the tree (called the root). All the
strings x ∈ Σ∗ are assigned to it.

– If the vertex of the p-th level is already in the tree with the set

[α1, α2, · · · , αp/β1, β2, · · · , βp]

used as label to it, we “consider” whether the sets

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1]

are infinite. If the two sets are infinite then we add two (p + 1)-th level
vertices to the tree and label them by the sets

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1] ,
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respectively. We say that these two vertices

[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, 0/β1, β2, · · · , βp, 1]

are strictly higher than the vertex v labeled by

[α1, α2, · · · , αp/β1, β2, · · · , βp] (3)

If at least one of these two sets is finite or empty then no vertex is added in
the result of this “consideration.” In this case, we continue as follows. If the
two sets

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 1]

are infinite, then we add two (p + 1)-th level vertices to the tree S and label
them by the sets

[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, 1/β1, β2, · · · , βp, 1] ,

respectively. Again, we say that these two vertices are strictly higher than v.
If at least one of these two sets is finite or empty then no vertex is added.

Notice two properties of the sets assigned to the vertices of the tree S.

(1) If a vertex
[α1, α2, · · · , αp+1/β1, β2, · · · , βp+1]

is strictly higher than

[α1, α2, · · · , αp/β1, β2, · · · , βp]

then the following inclusion holds:

[α1, α2, · · · , αp+1/β1, β2, · · · , βp+1] ⊆ [α1, α2, · · · , αp/β1, β2, · · · , βp] .

(2) If two vertices

[α1, α2, · · · , αp/β1, β2, · · · , βp] and
[γ1, γ2, · · · , γr/δ1, δ2, · · · , δr]

are distinct vertices in the tree S then there exist strings

x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp] and
y ∈ [γ1, γ2, · · · , γr/δ1, δ2, · · · , δr]

and a string z ∈ Σ∗ such that (xz ∈ L) < (yz ∈ L).
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Property (1) is an immediate consequence of the construction.
The second property is proved separately for the following two cases.

Case (a). One of the vertices is strictly higher than the other one, e.g., p > r.

By the definition of strictly higher (cf. (3)) we then have αi = γi and βi = δi

for i = 1, . . . , r and so, by Property (1) and the transitivity of set inclusion,
[α1, α2, · · · , αp/β1, β2, · · · , βp] ⊆ [α1, α2, · · · , αr/β1, β2, · · · , βr]. Then we take
any arbitrarily chosen string x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp], and any string
y ∈ [α1, α2, · · · , αr/β1, β2, · · · , βr] \ [α1, α2, · · · , αr, αr+1/β1, β2, · · · , βr, βr+1],
and define z = α1 · · ·αrαr+1, i.e., the concatenation of α1, . . . , αr+1. By con-
struction x, y, and z clearly satisfy Property (2).

The subcase p < r is handled mutatis mutandis.

Case (b). None of the vertices [α1, · · · , αp/β1, · · · , βp] and [γ1, · · · , γr/δ1, · · · , δr]
is strictly higher than the other one.

Let j be the least number less than min{p, r} such that αi = γi and βi = δi

for all i = 1, . . . , j. Note that we allow j = 0 to denote the case that the highest
such vertex is the root, i.e., the vertex of level zero.

Consequently, we then have that αj+1 6= γj+1 or βj+1 6= δj+1. But by
construction we know that αj+1 6= γj+1 cannot occur. Therefore, we know
that βj+1 6= δj+1 must hold, i.e., γj+1 = βj+1, where b denotes the logical
negation of b ∈ {0, 1}. This in turn implies that

[α1, . . . , αj+1/β1, . . . , βj+1] ∩ [α1, . . . , αj+1/β1, . . . , βj+1] = ∅ , (4)

i.e., these two sets partition [α1, . . . , αj/β1, . . . , βj ]. So by Property (1) and
Equality (4) we also have

[γ1, · · · , γr/δ1, · · · , δr] ∩ [α1, . . . , αj+1/β1, . . . , βj+1] = ∅ . (5)

Therefore, we can take any string x ∈ [α1, α2, · · · , αp/β1, β2, · · · , βp], and any
string y ∈ [γ1, · · · , γr/δ1, · · · , δr]. Furthermore, we set z = α1 · · ·αj+1.

So, if j = 0 then x and y are as above, and z = α1. Thus, χL(xα1) = β1

and χL(yα1) 6= β1. In the general case that j > 0 we directly obtain that
χL(xz) = βj+1 and χL(yz) 6= βj+1 (cf. (5)), and Property (2) is shown.

Claim: The tree S has at most k vertices.

Suppose that the tree S has at least (k +1) vertices. Take an n-tuple of pair-
wise distinct strings from each of the sets, and, again nonconstructively, appropri-
ate z1, . . . , zk+1 (such that Property (2) will be applicable). Denote the resulting
tuples by (x1

1z
1, · · · , x1

nz1), (x2
1z

2, · · · , x2
nz2), . . . , (xk+1

1 zk+1, · · · , xk+1
n zk+1).

The n-DFA A has only k states but we have taken (k + 1) many n-tuples
of strings. Hence there are two distinct values i and j such that, after reading
(xi

1z
i · · · , xi

nzi) and (xj
1z

j · · · , xj
nzj), the n-DFA A is in the same state. So,

by the choice of the z`, ` = 1, . . . , k + 1, we know that zi = zj =: z and
that Property (2) is applicable. Since we also have m > n/2, if the n-tuple
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corresponding to the output on (xi
1z · · · , xi

nz) contains no less than m correct
values then the n-DFA cannot produce an n-tuple as output which contains m
many correct values on the input (xj

1z, · · · , xj
nz). This is a contradiction, and

the claim is shown.

Now we add one more level to the tree S in order to construct a new tree S′.
Denote the highest level of S by s, We have already shown that s ≤ k−1. Every
vertex of the highest level and only these vertices have the following property.
If the vertex is

[α1, α2, · · · , αp/β1, β2, · · · , βp]

then there may exist a γ ∈ Σ such that the sets

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 1]

are infinite. In this case we add

[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 0] and
[α1, α2, · · · , αp, γ/β1, β2, · · · , βp, 1]

as new vertices of the k-th level over the vertex

[α1, α2, · · · , αp/β1, β2, · · · , βp] .

Each newly added vertex either corresponds to some state of the n-DFA A
that is already related to another vertex of S′ or it corresponds to a state of A
that yet has no vertex in S′. We transform S′ into a graph which is no longer a
tree by identifying vertices that correspond to the same state of the n-DFA A.
We continue adding new and new vertices in the same style. For every vertex
that has been added in the process of transforming the tree S we try to add new
vertices of a higher level but we identify them with vertices already constructed
if no new state of the n-DFA A is employed. It is easy to see that the obtained
graph (we call it S′′) has no more than k vertices.

To construct an equivalent deterministic finite automaton we notice that in
the construction above we distinguished between “infinitely many strings” and
“a finite number of strings.” Let d exceed the length of all considered “a finite
number of strings.” Then every string of length no less than d falls in one or
several of the sets which are names of vertices in S′′. Consider unions of such sets.
We say that a union of the sets which are names of vertices in S′′ is consistent
if it is a union of type

[α1/β1] ∪ [α1, α2/β1, β2] ∪ · · · ∪ [α1, α2, · · · , αp/β1, β2, · · · , βp].

We say that a union is complete if it is not possible to add any other set which
is a name of a vertex in S′′ to this union.

It is easy to see that every consistent and complete union has incorporated a
vertex of the upper-most level which is not present at any other consistent and
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complete union. Hence the number of consistent and complete unions does not
exceed the number of vertices in the graph S′′, i.e., it does not exceed k.

Consider a deterministic finite automaton that has states numbered by the
consistent and complete unions of vertices of the tree S′. The initial state (for
the empty input string) is the vertex of the level zero. The state numbered
[α1, α2, · · · , αj/β1, β2, · · · , βj ] is accepting if and only if βj = 1. Since m > n/2,
it is possible to construct the program for the deterministic finite automaton
counting to which state the transition should take place. For strings that have
a length exceeding d this automaton is equivalent to the given n-DFA A and its
number of states does not exceed k. ut

The formulation of Theorem 4 may seem to be over-complicated. Why an-
other language is considered? It is well-known that a language differing from a
regular languages only in a finite number of strings is itself regular. However, the
number of states may be influenced very much if we neglect this finite number
of strings (cf. Theorem 2, and Theorems 3 and 4, respectively).

Theorem 4 has a sensitive restriction: the considered deterministic frequency
automata have parameters (m,n) with m > n/2. Looking at Theorem 1 we see
that this restriction cannot be relaxed.

Therefore, we turn our attention to the unary case, i.e., only single-letter
alphabets are allowed. Then the situation changes drastically, since the following
theorem is known.

Theorem 5 (Austinat et al. [2], Kinber [13]). Let any pair (m,n), where
0 < m ≤ n, be arbitrarily fixed, and let A be any n-DFA having k states. Then
every language L over a single-letter alphabet that is (m,n)-recognized by the
n-DFA A is also recognizable by a deterministic finite automaton.

We complement Theorem 5 in terms of size complexity of the automata.

Theorem 6. Let any pair (m,n), where 0 < m ≤ n, be arbitrarily fixed, and
let A be any n-DFA having k states. If there is a language L over a single-
letter alphabet Σ which is (m,n)-recognized by the n-DFA A then there exists a
language L′ ⊆ Σ∗ differing from L only in a finite number of strings such that L′

can be recognized by a deterministic finite automaton with k states.

Proof. Without loss of generality, let the single-letter alphabet Σ = {1}. If an
n-DFA A does (m,n)-recognize a language L ⊆ Σ∗ then A (1, n)-recognizes L,
too. Let Q be the set of states of A. By assumption we know that |Q| = k. For
all qb ∈ Q we consider the following sets of n-tuples of input strings:

Tb = {(1m1 , 1m2 , · · · , 1mn) | A after reading
(1m1 , 1m2 , · · · , 1mn) enters state qb} ,

where all mi ≥ 1, i.e., all mi are positive natural numbers. Note that the class Tb

is labeled by the index b of the state qb but not by the n-tuple of input strings.
Let T be the collection T = {Tb | Tb is infinite }. We define a relation be-

tween the sets Tb in T . Let Tb and Tc be any sets in T . Then we say that
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(1m1 , 1m2 , · · · , 1mn) ∈ Tb precedes (1s1 , 1s2 , · · · , 1sn) ∈ Tc if there exists a
string 1v such that

m1 + v = s1,m2 + v = s2, · · · ,mn + v = sn .

Precedence of n-tuples induces precedence of sets in T . Since all the sets Tb ∈ T
are infinite, for every pair (Tb, Tc), either Tb precedes Tc or Tc precedes Tb or
Tb does not precede Tc and Tc does not precede Tb. The precedence relation
divides the sets into equivalence classes corresponding to states b and c in the
same cycle.

Let k be the number of the states in A. Then each set Tb ∈ T contains an
n-tuple (1m1 , 1m2 , · · · , 1mn) such that m1 + m2 + · · ·+ mn ≤ n· k.

It may be possible that the same automaton A (1, n)-recognizes several lan-
guages. Let L be one of these languages. Then it is possible to make assertions
about which components of the n outputs of A on a certain n-tuple of input
strings are correct. By the definition of frequency computation, for every n-tuple
of input strings at least one of the outputs is correct.

Assume that each equivalence class of the sets Tb is represented by one set
from the equivalence class:

(1m1 , 1m2 , · · · , 1mn), (1p1 , 1p2 , · · · , 1pn), · · · , (1s1 , 1s2 , · · · , 1sn) .

Let these classes contain tm, tp, · · · , ts sets Tb, respectively. Let N be the least
common multiple of tm, tp, · · · , ts.

Assume that one of the equivalence classes is represented by n-tuples of input
strings

(1m1 , 1m2 , · · · , 1mn) ,

(1m1+1, 1m2+1, · · · , 1mn+1) ,

· · ·
(1m1+tm , 1m2+tm , · · · , 1mn+tm) .

Then by analyzing the outputs on these n-tuples

(y1
1 , y1

2 , · · · , y1
n)

(y2
1 , y2

2 , · · · , y2
n)

· · ·
(ytm

1 , ytm
2 , · · · , ytm

n )

we can find one or several periodical sequences f = 〈f(1), f(2), · · · 〉 of elements
0, 1 (any such sequence describes a language in a single-letter alphabet such that
f(n) = 1 iff 1n is in the language) with period tm such that

(f(m1) = y1
1) ∨ (f(m2) = y1

2) ∨ · · · ∨ (f(mn) = y1
n)

(f(m1 + 1) = y2
1) ∨ (f(m2 + 1) = y2

2) ∨ · · · ∨ (f(mn + 1) = y2
n)

· · ·
(f(m1 + tm) = ytm

1 ) ∨ (f(m2 + tm) = ytm
2 ) ∨ · · · ∨ (f(mn + tm) = ytm

n ) .
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The Chinese Remainder Theorem gives an algorithm of how to find such
sequences. However, combining all these calculations give us only a sequence
(or several sequences) with period N ≤ k!. On the other hand, the states of
the frequency automaton are periodically repeated with periods tm, tp, · · · , ts,
respectively. The least common multiple of all these periods is N . Hence the
language can be recognized by a deterministic finite automaton with N states.

There is no need to perform these calculations by a finite automaton. After
performing these calculations we can reconstruct a full period of the length N
and construct the program of the deterministic finite automaton.

However, a deeper analysis of the frequency automaton is needed, since our
theorem promises a deterministic finite automaton with no more than k states,
and not N states. Let L be a language (1, n)-recognized by the n-DFA A. For
each cycle

(1m1 , 1m2 , · · · , 1mn) ,

(1m1+1, 1m2+1, · · · , 1mn+1) ,

· · ·
(1m1+tm , 1m2+tm , · · · , 1mn+tm) .

of the frequency automaton we can say which outputs

(y1
1 , y1

2 , · · · , y1
n)

(y2
1 , y2

2 , · · · , y2
n)

· · ·
(ytm

1 , ytm
2 , · · · , ytm

n )

are correct and which are not. For every cycle we establish whether for some
i ∈ {1, 2, · · · , tm} all the outputs

y1
i , y2

i , · · · , ytm
i

are correct. If there is such a cycle and such an i then the i-th output of this
cycle provides correct results for all sufficiently long input strings.

If such an i does not exist for all cycles then the n-DFA A does not recognize
L correctly, because, by Chinese Remainder Theorem, there is an n-tuple of
input strings such that all the outputs of A are incorrect. ut

However, Theorem 6 does not hold for all approximations.

Theorem 7. Let any number n ∈ N, n ≥ 1, be arbitrarily fixed, and let A be any
n-DFA having k states. If there is a language L over a single-letter alphabet Σ
which is (1, n)-recognized by the n-DFA A then there exists a language L′ ⊆ Σ∗

differing from L only in a finite number of strings such that L′ can be only
recognized by a deterministic finite automaton which has at least k! states.
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