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Abstract. In the present paper, we propose a new method of n-gram
analysis using ZBDDs (Zero-suppressed BDDs). ZBDDs are known as a
compact representation of combinatorial item sets. Here, we newly ap-
ply the ZBDD-based techniques for efficiently handling sets of sequences.
Using the algebraic operations defined over ZBDDs, such as union, in-
tersection, difference, etc., we can execute various processings and/or
analyses for large-scale sequence data. We conducted experiments for
generating n-gram statistical data for given real document files. The ob-
tained results show the potentiality of the ZBDD-based method for the
sequence database analysis.

1 Introduction

One of the important data model that has been used for text analysis are n-
grams (cf., e.g., [2, 7, 8, 9]). Recently, n-grams have been used not only for text
analysis but also for text indexing in some search engines [1]. If we can compactly
represent n-gram data and efficiently manipulate them, it will greatly facilitate
text database analysis and machine learning applications.

In the present paper, we propose a method of n-gram computation with a
new sequence data structure based on Zero-suppressed BDDs. BDDs (Binary
Decision Diagrams) are graph-based representations of Boolean functions, now
widely used in system design and verification. Zero-suppressed BDDs (ZBDDs)
are a special type of BDDs that are suitable for handling large-scale sets of combi-
nations. Using ZBDDs, we can implicitly enumerate combinatorial item set data
and efficiently compute set operations over the ZBDDs. For n-gram computa-
tions, we need to manipulate sets of “sequences,” which is a more complicated
data model than sets of “combinations.” We present a method of manipulating
sets of sequences using ZBDDs and generate efficiently n-gram data for given
sequence databases. We have implemented a prototype system and show exper-
imental results to evaluate our new n-gram analysis method.

2 ZBDDs and Item Set Manipulation

Within this section, we briefly describe the basic techniques of ZBDDs for rep-
resenting sets of combinations efficiently.
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2.1 Sets of Combinations and their Representation

A set of combinations consists of the elements each of which is a combination of
a number of items. There are 2n combinations that can be chosen from n items,
so we have 22n

variations of sets of combinations. For example, for a domain of
five items a, b, c, d, e, we can express examples of sets of combinations as:
{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, ∅. Here “1” denotes a combination of null
items, and “∅” means the empty set. Sets of combinations are one of the basic
data structures for handling combinatorial problems. They often appear in real-
life problems, such as combinations of switching devices, sets of faults, paths in
the networks, etc., and of course, they can be used for representing frequent item
set data.

a b c F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

→ c

→ bc

→ ab

→ abc

As a Boolean function:
F = ab + ac

As a set of combinations:
F = {ab, abc, bc, c}

Fig. 1. Correspondence of Boolean functions and sets of combinations.

A set of combinations can be mapped into Boolean space of n input variables.
For example, Fig. 1 shows the truth table of the Boolean function (ab+ac), but it
also represents the set of combinations {ab, abc, bc, c}. Such Boolean functions are
called characteristic functions for the sets of combinations. Using BDD manip-
ulation for characteristic functions, we can implicitly represent and manipulate
large-scale sets of combinations. In addition, we can enjoy more efficient ma-
nipulation using “Zero-suppressed BDDs” (ZBDD) (cf. [4]), which are a special
type of BDDs optimized for handling sets of combinations.

ZBDDs are based on the reduction rule different from the one used in ordinary
BDDs. As illustrated in Fig. 2(a), the ordinary reduction rule deletes the nodes
whose two edges point to the same node. However, in ZBDDs, we do not delete
such nodes but delete another type of nodes whose 1-edge directly points to the
0-terminal node, as shown in Fig. 2(b).

In ZBDDs, a 0-edge points to the subset (cofactor) of combinations not in-
cluding the decision variable x, and a 1-edge points to the subset (cofactor) of
combinations including x. If the 1-edge directly points to the 0-terminal node,
it means that the item x never appears in the set of combinations. The Zero-
suppressed reduction rule automatically deletes such a node with respect to the
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(a) Ordinary BDD. (b) ZBDD.

Fig. 2. Different reduction rules for BDD and ZBDDs.

irrelevant item x, and thus ZBDDs more compactly represent sets of combina-
tions than ordinary BDDs do.

The detailed techniques of ZBDD manipulation are described in the arti-
cles [4, 5]. A typical ZBDD package supports cofactoring operations to traverse
0-edge or 1-edge, and binary operations between two sets of combinations, such
as union, intersection, and difference. The computation time for each operation
is almost linear to the number of ZBDD nodes related to the operation.

2.2 Item Set Histograms and ZBDD Vectors

An item set histogram is the table for counting the number of appearances of each
item combination in the given database. An example of an item set histogram
is shown in Fig. 3. This is just a compressed table of the database to combine
the same tuples appearing more than once into one line with the frequency.

Record ID Comb.

1 abc

2 ab

3 abc

4 bc

5 ab

6 abc

7 c

8 abc

9 abc

10 ab

11 bc

Original Database

Comb. Freq.

abc 5

ab 3

bc 2

c 1

Item set histogram

Fig. 3. Database example and item set histogram.
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Comb. frequency F2 F1 F0

abc 5 (101) 1 0 1

ab 3 (011) 0 1 1

bc 2 (010) 0 1 0

c 1 (001) 0 0 1

F0 = {abc, ab, c}
F1 = {ab, bc}, F2 = {abc}

0 1

00

0
0

0

0 1 10

1101

1
1 1

bbb

FF2 0

a a a

cc

1F

Fig. 4. ZBDD vector for item set histogram.

Our n-gram data structure is based on the item set histogram represen-
tation [6] using ZBDDs. Since ZBDDs are representation of sets of combina-
tions, a simple ZBDD distinguishes only the existence of each combination in
the database. In order to represent the numbers of combination’s appearances,
we decompose the number into m-digits of ZBDD vector {F0, F1, . . . , Fm−1} to
represent integers up to (2m − 1), as shown in Fig. 4. Namely, we encode the
appearance numbers into binary digital code, where F0 represents a set of tu-
ples appearing odd times (LSB = 1), F1 represents a set of combinations whose
appearance number has a 1 in the second lowest bit, and similarly we define the
set of each digit up to Fm−1.

In the example of Fig. 4, the item set frequencies are decomposed as: F0 =
{abc, ab, c}, F1 = {ab, bc}, F2 = {abc}, and then each digit can be represented
by a simple ZBDD. The three ZBDDs share their sub-graphs to one another.

When we construct a ZBDD vector of an item set histogram, the number of
ZBDD nodes in each digit is bounded by the total appearance of items in all
combinations. If there are many partially similar combinations in the database,
the sub-graphs of ZBDDs are shared very well, and a compact representation is
obtained. The bit-width of ZBDD vector is bounded by log Smax, where Smax is
the appearance of most frequent items.

Once we have generated a ZBDD vector for the item set histogram, various
operations can be executed efficiently. Here are the instances of operations used
in our pattern mining algorithm.

– H.factor0(v): Extracts sub-histogram of combinations not including item v.
– H.factor1(v): Extracts sub-histogram of combinations including item v and

then delete v from the combinations. (also considered as the quotient of H/v)
– v · H: Attaches an item v on each combination in the histogram F .
– H1 + H2: Generates a new item set histogram with sum of the frequencies

of corresponding tuples.
– H.tuplecount: The number of tuples appearing at least once.
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These operations can be composed as a sequence of ZBDD operations and the
result is also compactly represented by a ZBDD vector. The computation time
is roughly linear in the total ZBDD sizes. For a more detailed description of the
techniques of ZBDD vector manipulation, we refer the reader to [6].

3 ZBDD-Based Representation for Sets of Sequences

Next we explain, in some more detail, our method of generating n-gram data
representations using ZBDDs.

3.1 Sets of Sequences and Sets of Combinations

First, we describe the way to extend the representation of sets of combinations
to sets of sequences. In our method, we define an item for each symbol (or
character) used in each position of sequences. Namely, the item represents not
only a symbol but also its position in the sequence. An example is given below.

Sequences Combinations
AABC a1a2b3c4

CABC c1a2b3c4

10

a

c

c

a1

2

4

1

b3

Fig. 5. ZBDDs example which expresses sets of sequences.

In the combination for the sequence “AABC,” the item a1 represents the
symbol “A” at the first (leftmost) position. Similarly, c4 express the symbol
“C” at the 4th position. In our method, if the same symbol appears at different
positions, we treat them as different items. For example, the sequence “AABC”
includes the same symbol ”A” at the first and the second position, but we treat
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them as a1 and a2, i.e., as different items. After such an assignment of items, a
set of sequences can be represented by a set of combinations. Then, the set of
combinations can be represented by a ZBDD. An example is shown in Fig. 5.
Here, the ZBDD represents the set of sequences {AABC, CABC}. In this way,
the sets of sequences are decomposed to sets of combinations, and they can be
manipulated by ZBDD-techniques.

3.2 n-gram Representation

An n-gram data is a histogram of all possible subsequences of length n included
in a given sequence. As described in Subsection 2.2, we can compute item set
histograms by using ZBDD vectors. So, the ZBDD-based representation for sets
of sequences can be extended to sequence histograms by using ZBDD vectors.

3.3 Binary Coding of Symbols

In our method, we use a number of items for the respective positions in the
sequences. The number is the product of the number of symbols |Σ| and the
sequence length m. If we apply this method for a language using not so many
symbols such as gene sequence data, the number of items would be feasible.
However, for a language that has many symbols such as Japanese Kanji, too
many items would be required. To address this problem, we propose a method
of using binary coding to save the number of items.

When we assume the three symbols A, B and C for each position, we may
use the 2-bit binary coding shown in the following table.

Symbols Items Binary code (x1
kx0

k) Encoded combinations

A ak 01 x0
k

B bk 10 x1
k

C ck 11 x1
kx0

k

Using this encoding, we can express the sequences ”AABC” and ”CABC” by
the following table, and the resulting ZBDD is shown in Fig. 6.

Sequences Encoded combinations

AABC x0
1x

0
2x

1
3x

1
4x

0
4

CABC x1
1x

0
1x

0
2x

1
3x

1
4x

0
4

We may use ASCII code for this purpose. ASCII code expresses conventional
western characters with 8bit vectors. We treat one bit as one item. One can
distinguish at most 255 symbols with a combination of eight items for each
position. Examples are shown below.
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x
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x

Fig. 6. ZBDDs example which expresses sets of sequences.

Symbols ASCII Binary code(x7x6x5x4x3x2x1x0) Encoded
(decimal) combinations

a 97 01100001 x6x5x0

b 98 01100010 x6x5x1

c 99 01100011 x6x5x1x0

z 122 01111010 x6x5x4x3x1

A 65 01000001 x6x0

If the probability distribution of the symbols is given, we shall be able to
design a more efficient binary coding assignment.

4 Experimental Results

4.1 Generating n-gram Data Based on ZBDDs

For evaluating the feasibility of our method, we performed experiments for gener-
ating ZBDDs of the n-grams for a given text data. We used the English plain text
data “Alice in Wonderland.” This text consists of over 3,000 lines and 26,000
words, having a total of 138KB of plane text. In our experiments, we used a
3.00GHz Pentium 4 Linux PC with 512MB main memory.

The results of generating n-grams for n = 1 through 10 are shown in Table 1.
In this table, the column “ZBDD nodes” shows the total number of nodes in the
ZBDD vector representing the n-gram. “#Sequences” stands for the number of
different n-grams actually found in the text. “Max frequency” shows the number
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Table 1. Experimental results

ZBDD ruby-Hash

n ZBDD nodes #Sequences Max frequency Time(sec) Time(sec)

1 121 26 13,681 3.17 0.28
2 1,428 518 3,813 6.18 0.29
3 9,487 4,750 2,402 9.45 0.41
4 33,199 19,004 500 12.96 1.01
5 73,940 38,913 417 16.73 2.12
6 129,738 57,510 221 22.4 2.83
7 198,311 72,285 211 30.33 3.90
8 283,544 82,891 116 44.02 5.01
9 388,863 90,247 116 63.49 6.05

10 522,175 95,366 58 89.51 7.45

of appearances of the most popular subsequences of length n in the text. Finally,
“Time” displays the time needed to generate the data structure ZBDD. The
ZBDD structure is generated by VSOP (see [6]), the script language which can
manipulate large scale ZBDDs. In this experiment, we used the symbol encoding
method with ASCII code, as described in the previous section.

From the result, we can observe that the size of ZBDDs is almost proportional
to the product of the length n and the number of sequences. The CPU time is
also almost linear in size of the ZBDD.

Then we compare the performance of generating speed between ZBDD and
other data structure. As an existing method, we use the Ruby [10] “Hash” class
implementation. Ruby is the object oriented script language which is popularly
used in web applications. The “Hash” class provides the function of indexing
tables, and is included in the ruby standard library. The result of this experiment
is the rightmost column “Time” in the Table 1. The result shows that our method
is almost ten times slower than the ruby-Hash implementation, so our method
is not so effective if we simply generate n-grams. However, ZBDD-based method
has an advantage of flexible post processing after generating n-gram data. If we
use ruby-Hash data structure we can only operate simple matching of sequences.
So we would have to write several ruby codes to calculate complicated operations.

After generating the ZBDD vector of the n-gram, we can easily retrieve the
frequent sequences by using algebraic operations over ZBDDs. The additional
computation cost is relatively smaller than the cost for generating n-grams.
Table 2 shows the top 10 frequent sequences in the 5-gram of “Alice in Won-
derland.” The most frequent sequence is “alice,” and it appears 417 times. The
2nd, 3rd, 4th, and 10th sequences seem a part of same sequence “he/she said
the.” In this experiment, we removed spaces, special symbols such as question
mark, and periods from the text. We only used case-independent alphabets and
numbers to create n-grams.
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Table 2. Top 10 subsequences in the 5-gram of “Alice in Wonderland.”

Rank Sequence Appearance

1 “alice” 417
2 “saidt” 265
3 “aidth” 223
4 “idthe” 220
5 “thing” 170
6 “andth” 169
7 “dalic” 163
8 “ofthe” 156
8 “ndthe” 156

10 “esaid” 133

4.2 Post Processing for n-gram Data

An advantageous feature of our ZBDD-based method is that it allows flexible
post processing after the n-gram data have been generated. The post processing
is done by using algebraic operations such as intersection, union, difference, and,
additionally, some numeric operations.

For example, the operation that calculates the rank of frequency of the se-
quences is represented by the following short command scripts. These command
scripts are written in VSOP. The uppercase letters are register variables which
show sequences of n-grams, while the lowercase letters are symbols which repre-
sent each character in n-grams.

T1 = {a1 a2 b3 + a1 b2 c3 + ...}
M = T1.MaxVal
print M
print T1 / M

Using only four commands we can get the ranking and the frequency of
appearance. The first command generates the ZBDD of item sets of n-gram. The
three symbols ”a1 a2 b3” represent the 3-gram ”aab”. The meaning of symbol
”a1” is as follows: ”a” means that symbol ”a1” expresses the character ”a”, and
”1” specifies that character ”a” exists as 1st character in the 3-gram. Similarly,
the three symbols ”a1 b2 c3” express another 3-gram, i.e., ”abc”. Therefore,
the variable ”T1” contains some 3-grams including ”aab”, ”abc” as item sets.
MaxVal is the calculation to get the number of the largest coefficient. So, the
2nd command returns the frequency of the most popular item sets as M. And
the last line returns the most popular item sets.

For having another example, suppose that we want to obtain the subset of
the n-gram data such that the last letter is either “a,” “e,” “i,” “o,” or “u.” In
this case, we first generate the five subsets of the n-gram data such that the first
subset includes all n-grams having the last letter “a,” the second subset includes
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all n-grams having the last letter “e,” . . . , and the fifth subset includes all n-
grams having the last letter “u.” Then we apply union operations to combine
all the subsets.

These instructions can easily be described in a command script of ZBDD
operations as shown below.

T2 = {a1 a2 b3 + a1 b2 c3 + ...}
T3 = (T2 / a3) * a3
T4 = (T2 / e3) * e3
T5 = (T2 / i3) * i3
T6 = (T2 / o3) * o3
T7 = (T2 / u3) * u3
T8 = T3 + T4 + T5 + T6 + T7

In the first line command, we store all n-grams as T2. T3 to T7 are the sub-
sets including the corresponding letter at the last position. Finally, we get the
combination of all subsets T3 to T7 as T8.

Next, we show a good example of applying ZBDD operations after generating
n-gram data. We prepared a command script to compare two sets of n-grams.
That is, we compare the first half of the text in “Alice in Wonderland” to the
second half of it. The corresponding VSOP commands to compare these two sets
are displayed below.

S1 = {a1 b2 c3 + b2 c3 d4 + ...}
S2 = {c1 d2 e3 + d2 e3 f4 + ...}
C = S1 - S2
M = C.MaxVal
print M
print C / M

In the first and the second command we store the first and second half of n-
grams as S1 and S2, respectively. Then we store the difference of S1 and S2
as C. Finally, C.MaxVal and C / M return the frequency of the most popular
sequence and the sequence itself, respectively.

The obtained results are displayed in Table 3, 4, and 5 below.
Table 3 and 4 do not differ much, since the same sequences appear many times

in the first and the second half of the text. Therefore, we also check the histogram
of differences of the histogram. As shown in Table 5 below, the sequence “the
queen” appears only in this table. This is caused by the fact that “queen” appears
in the story only in the second half of the text (frequently).

5 Conclusions

In the present paper, we have proposed a new method to represent sequences in
sets of item sets, i.e., by using ZBDDs. In order to demonstrate the efficiency
of this method, we have performed a preliminary experiment of generating an
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Table 3. Top 5 subsequences in the 5-gram of “The first half of Alice in Wonderland.”

Rank Sequence Appearance

1 “alice” 201
2 “thing” 93
2 “saidt” 93
4 “littl” 85
4 “ittle” 85

Table 4. Top 5 subsequences in the 5-gram of “The Second half of Alice in Wonder-
land.”

Rank Sequence Appearance

1 “alice” 216
2 “saidt” 172
3 “idthe” 145
4 “aidth” 143
5 “andth” 103

n-gram set for a given text file. The experimental result shows that we can
construct the ZBDD-based n-gram data structure in a feasible computation time
and memory space. Regrettably, our data structure does not perform faster than
previous data structure implemented by Ruby. So we improve our method to
utilize ZBDD’s effect that share the ZBDD nodes and compress size of data.

Though we restricted ourselves within this paper to generate n-gram statis-
tical data for a given real document file, i.e., “Alice in Wonderland,” ZBDDs
can also be used to perform more advanced calculations. For example, we may
also apply our method to represent a text dictionary and to perform quickly
dictionary search operations.

Table 5. Top 5 subsequences in the 5-gram of “Difference between the First half and
the Second half of Alice in Wonderland.”

Rank Sequence Appearance

1 “saidt” 79
2 “idthe” 70
3 “queen” 68
4 “thequ” 65
5 “heque” 65
5 “equee” 65
5 “urtle” 65
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It should be noted that our new method can also be applied to analyze and
to manipulate DNA data or some semi-structured data such as linguistic data
annotated by NLP tools (e.g., [3]). This will be done in the future.
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