Theoretical Computer Science 62 (1988) 289-310 289
North-Holland

ON THE POWER OF RECURSIVE OPTIMIZERS

Thomas ZEUGMANN
Department of Mathematics, Humboldt University Berlin, 1086 Berlin, German Dem. Rep.

Communicated by R. Karp
Received March 1986
Revised January 1987

Abstract. Probletns of the effective synthesis of fastest programs (modulo a recursive factor) for
recursive functions given by input-output examples or an arbitrary program are investigated. In
contrast to the non-existence result proved by Alton (1974, 1976) we show various existence
results. Thereby we deal in detail with the influence of the recursive factor in dependence of the
concrete formalization of a fastest program. In particular, we shall show that, even for functicn
classes containing arbitrarily complex functions, the effective synthesis of fastest programs {modulo
a simple recursive operator) can be achieved sometimes.

1. Introduction

The present paper deals with the theory of inductive inference, which has been
the subject of monographs (cf. [4]) and several survey papers (cf., e.g., [3, 22]), as
well as books (cf., e.g., [26]).

In the following we study the question of effectively synthesizing the fastest
programs (modulo 2 recursive factor) for recursive functions. That means, given a
class of functions, we ask whether there is a master program, a so-called “recursive
optimizer”, uniformly synthesizing the fastest programs in an effective way, for any
function contained in the considered function class. If we are given any complexity
measure in the sense of Blum [6], this problem arises naturally since in any Godel
numbering every recursive function has infinitely many programs and among them
there are arbitrarily “bad” ones (i.e., programs possessing an extremely large
computational complexity). In [1, 2, 7] the existence problem for such recursive
optimizers was firstly studied and generally answered in the negative. On the other
hand, the problem of finding programs having nearly minimal size (i.e., an optimal
program -vith respect to a statical complexity measure) has been the subject of
intensive research too (cf. [4, 13]). Recently it has been solved completely by Chen
[13].

What we present here is a detailed analysis of the existence problem for recursive
optimizers. In doing so, we first obtain a sharpened version of Theorem 3.1 pointed
out by Alton [1]. Then, in contrast to this negative result, we shall show that, even
for function classes containing arbitrarily complex functions, the effective synthesis

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

290 T. Zeugmann

of fastest programs (modulo a simple recursive operator) can be achieved sometimes.
Moreover, it will be proved that recursive functions possessing an unbounded range
and recursive predicates are extremely different with respect to the existence of
fastest programs.

Consequently, the capabilities of recursive optimizers working on recursive predi-
cates are much more restricted as those working on arbitrary recursive functions.
In addition, we shall see that the choice of the recursive factor (e.g., recursive
functions, computable operators, . ..) has great influence on the power of recursive
optimizers.

In order to make the paper more readable, we structured it as follows: basic
definitions and notations are given in Section 2. Then we present basic results. In
Section 4 the main theorems are given. All proofs are contained in Section 5.

2. Basic definitions and notations

Unspecified notation follows Rogers [27]. In addition tc or in contrast with [27]
we use the following: N={0, 1, 2, . . .} dencizs the set of all natural numbers. By PF
and TF we denote the set of all partial and total functions of one variable over N
respectively.

The class of all partial recursive and recursive functions of one respectively two
variables is denoted by P, R, P?, R* respectively. Let f € P, then Val f denoies the
set {f(x)|xeN and f(x) is defined}. Ry, denotes the set of all fe R satisfying
Val f < {0, 1} (recursive predicates). Foliowing [23] we define: a measure of computa-
tional complexity is a pair (¢, @) where ¢ is an acceptable Godel numbering of P
and @ € P? satisfies Blum’s & zioms [6].

Instead of Axe(i, x) we often write ¢;. Let f€ P and ieN such that ¢, =f. Then
i is said to be a program for f. For convenience it is sometimes suitable to identify
a function from R with the sequence of its values; so 0°10° denotes the function f
with f{i)=1 and f(n)=0 for all n# i Let fe P; then min,f denotes the least i
satisfying ¢; = f. A function f € R is called a point of accumulation for a c'ass U< R
iff for all neN there is a function f'e U with f'(x) =f(x) for all x<n, but f'#f.
The set of all pairs, triples and finite sequences of natural numbers are denoted by
N, N* and N*. By (., .), ¢3, and ¢ we denote fixed recursive encodings of N, N® and
N* onto N respectively. We write f" instead of c(f(0),. .., f(n)) forany neN, fe P,
where f(x) is defined for all x<n.

We say that a sequence (j,),..n Of natural numbers converges to a number j iff j, =j
for almost all n. A sequence (j,).cn is said to be finitely convergent to a number j
iff it converges and j, = j,+,, for any n, implies j, =j for all k=n.

The abbreviation a.e. (V) stands for “almost everywhere” and means “all but
finitely inany”. We write i.0. as an abbreviation for “infinitely often”. By NUM we
denote the family of function classes U< R being embeddable in recursively
enumerable function classes (i.e., there is a g € R such that U = {¢,;,)|ie N}< R).

The power of recursive optimizers 291

For an arbitrary set M we denote the powerset of M by ?M. In the sequel <
denotes a proper set inclusion in contrast to <. Incomparability of sets is denoted
by #.

Next we shall consider computable operators. Let (F;).n be a canonical enumer-
ation of the finite functions. Following Helm [19] we will distinguish between the
following types of computable operators.

A mapping G:PF- PF is called a partial recursive operator iff there exists a
recursively enumerable set W such that, for any y, zeN, it holds that O(f)(y)==z
iff there is an x €N such that ¢;(x, y, 2’e€ W and F, c f A partial recursive operator
is said to be general recursive iff TF < domain O, and f € TF implies O(f)e TF.

A mapping 0:P- P is called an effective operator iff there is a fun' "on ge R
such that 0(¢;) = ¢,;, for all i eN. An effective operator @ is said to be total effective
provided that R < domain 0, and ¢; € R implies 0(¢;) € R.

The set of all general recursive operators and total effective operators is denoted
by GRO and TEO respectively. See also [27, 32] for more information about these
operators.

If O is an operator which maps functions to functions, we write O(f, x) to denote
the v.+'ue of the function O(f) at the argument x. Any computable operator can be
realized by a 3-tape Turing machine T which works as follows: If for an arbitrary
function f € domain 0, all pairs (x, f(x)), x € domain f are written down on the input
tape of T (repetitions are allowed), then T will write exactly all pairs (x, O(f, x))
or the output tape of T (under unlimited working time).

Let @ be a computable operator from GRO or TEO. Then, for fecdomain O,
meN, we set: AO(f, m) =“the least n such that, for all x<n, f(x) is defined and,
for the computation cf @(f, m), the Turing machine T only uses the pairs (x, f(x))
with x < n; if such an n does not exist, we set A0(f, m)=00". The functions h e R?
are sometimes regarded as operators of the form 0,(f; x) = h(x, f(x)). Furthermore,
for re€ R we write {2, to denote the set of all operators 0 e GRO with the property
that there is a Turing machine T realizing the operator O such that AO(f, m)<r(m)
holds for all functions f € domain 0 and all meN.

Now we are able to formalize the concept of a fastest program (modulo a recursive
factor). In order to do so, we shall use optimal and weakly optimal programs (cf.
[1]) and compression indices (cf. [8, 30]).

Definition 2.1. Let (, @) be a complexity measure, €€ TEO, fe R.
(A) Then ieN is said to be a weakly O-optimal program for f (with respect to
(o, @)) ift
(1) ¢i=f,
(2) V% [g;=f~ Bi(n)<O(®,, n) i.0.).
(B) A':0 ieN is called an O-optimal program for f (w.r.t. (¢, P)) iff
(1) ¢i=1,
(2) Vjlgj=f-> Pi(n)<O(P;,n) ae.].
Then we also say that the function f is (weakly) 0-optimal.

292 T. Zeugmann

Definition 2.2. Let (¢, @) be a complexity measure, 0 € TEO, fe R.
(A) Then ieN is said to be an O-compression index of f (w.r.t. (¢, D)) iff
1) e:=1,
(2) Vj[gj=f~VnP,(n)<0O(P;, max{i, j, n})].
(B) Also ieN is called an absolute O-compression index of f (w.r.t. (¢, P)) iff
1) =1,
(2) Vjvx [¢(»)=1(p) for all y<AO(®P;, max{i, x}) > Di(x) <
0(®;, max{i, x})].
In this case we also say that the function f is (absolutely) O-compressed.

The definitions given above are slightly different with respect to the demands on
the “almost-all” quantifier. Moreover, an absolute O-compression index is not only
required to satisfy the inequality @;(x) < 0(®;, max{i, x}) for all x and any program
j computing the same function as program i, but also for any program j which
coincides with program i on a sufficiently large initial segment dependent on i, j
and x (i.e., for all arguments y < A0(®;, max{i, x})).

Next we formalize the concept of a recursive optimizer in two different ways. The
first approach is directly based on the concept of finite identification introduced by
Trakhtenbrot/Barzdin [28] and intensively studied by Lindner [24]. The second one
starts from the standardization of programs originally investigated by Kinber [21]
and Freivalds/Wiechagen [15].

The main difference between these two concepts is that in the first cne only the
graph of the function to be identified is successively available, whereas an arbitrary
program of the considered function is given as input in the second approach.

Definition 2.3. Let U< R. Then U is said to be finitely identifiable (U € FIN) ift
there is a strategy S< P such that S(f") is defined for all neN, fe U, and the
sequence (S(f")).cn finitely converges to a program i of f.

By FIN(S) we denote the family of all those classes U which are finitely identifiable
by the strategy S. Note that FIN < EX, where EX denotes the family of all function
classes which can be identified in the limit (cf. the definition before the proof of
Theorem 4.8).

Now we modify Definition 2.3 by additionally demanding that the identified
programs be fastest ones in the sense of Definitions 2.1 and 2.2.

Definition 24. Let (¢, @) be a complexity measure, 0 TEO and U< R. Then U
is said to be

(A) finitely weakly O-optimally identifiable (U € O-Finworr(¢p, @)),

(B) finitely O-optimally identifiable (U € O-FinoPT1(¢p, P)),

(C) finitely O-compressed identifiable (U € O-Fincome(ep, D)),

(D) finitely absolutely O-compressed identifiable (U € 0-FiNnacoMp(g, D))

The power of recursive optimizers 293

iff there is a strategy S € P such that U € FIN(S) and for every function fe U the
sequence (S(f")).n finitely converges to a number i such that

(A) i is a weakly O-optimal program for f,

(B) i is an O-optimal program for f;

(C) i is an O-compression index of f,

(D) i is an absolute 0-compression index of f respectively.

Definition 2.5. Let U < R. U is said to be finitely standardizable (U € FS) iff there
is a function ¢ € P such that

(1) ¢;€ U implies that ¢(i) is defined and ¢, = ¢,;),

(2) ¢:= ¢; implies ¢(i) = ¢(j), for all ¢;, ¢; € U.
By FS(¢) we denote the family of all those classes U which are finitely standardizable
by the function .

Definition 2.6. Let (¢, @) be a complexity measure, 0 € TEO and U< R. Then U
is said to be

(A) finitely weakly O-optimally standardizable (U € 0-Fswort(¢, @)),

(B) finitely O-optimally standardizable (U € 0-Fsort(p, P)),

(C) finitely O-compressed standardizable (U € O-Fscomp(¢, D)),

(D) finitely absolutely O-compressed standardizable (U € G-Fsacomp{¢, D))
iff there is a function € P such that U € FS(¢) and, for every ¢;€ U,

(A) (i) is a weakly “-optimal program of ¢;,

(B) (i) is an O-optimal program of ¢;,

(C) ¢ (i) is an O-compression index of ¢;, ‘

(D) ¢(i) is an absolu«e O-compression index of ¢; respectively.

In the sequel we shall investigate the relations between the identification types
and standardization types defined above, as well as the dependencies of these types
on the complexity measure and th= choice of the operator 0.

3. Basic results
We start with a negative result.

Theorem 3.1. Let (¢, @) be a complexity measure, U={f|feR, ¢r0=f, f(x)=
Oa.e.}, and let € € TEO be arbitrarily fixed. Then there is no function y € P such that
¢; € U implies that (i) is defined and a weakly O-optimal program for ¢;.

This theorem is in some sense much stronger than the corresponding non-existence
result in Alton [1]. First, there is even a recursive function he R? such that every
function from U is absolutely h-compressed (cf. [30]), and not only h-optimal as
it was required in [1]). Second, the program equivalence for functions from U is

294 T. Zeugmann

partially decidable, i.e., U € FIN. So we could prove Alton’s conjecture [1] that the
undecidability of program equivalence and the non-existence of :-rogram optimizers
are different things. Third, we only require the optimizer ¢ to work on functions
from U and not on all h-optimal functions. Finally, the translated program is only
demanded to be weakly O-optimal for an operator O € TEO and not to be weakly
"_optimal for some h’'e R>.

As we shall see later, the enlargement of admissible operators from functions
h € R? to arbitrary operators @ € TEO greatly enlarges the family of function classes
uniformly having weakly 0-optimal programs.

Now one might expect that there is no hope at all to finitely identify or standardize
fastest programs, but surprisingly we find tne following theorem

Theorem 3.2. There is a natural complexity measure (¢, P) such that
(1) O-FinacoMmp(@, P) contains a function class of infinite cardinality for every
operator 0 € TEO.
(2) O0-Finacome(g, P) < 0-Fsacomp(ep, P) for every 0 € TEO.

On the other hand, Theorem 3.2 does not hold for arbitrary complexity measures.
Let € denote the identity operator (i.e., €(f) = f for all fe PF). Then we have this
theorem.

Theorem 3.3. There is a complexity measure (@,) such that €-Fsor1(¢, P)=0.

Considering Theorems 3.2 and 3.3, the problem arises whether results obtained
for one complexity measure can be generalized to any measure in a qualitative
sense. This question is partially answered by our next theorem.

Theorem 34. Let (¢, P) and (¢*, P*) be complexity measures and let © € TEO. Then
there is an operator 0* € GRO such that

(1) 0-FinworTt(g, P) < O*-FiINnworT(@*, %),
(2) O-Finort(g, @) < O*-FiNOPT(0*, D*),

(3) O-Fswort(p, @) < O*-Fswort(p*, ®*¥),
(4) O-Fsorr(g, @) < O*-Fsort(p*, D*).

Unfortunately, till now we have not been able to extend Theorem 3.4 to O-
FiNcomp(w, @), O-FiNacomP(g, ®), O-Fscomp(gp, P), and O-Fsacomp{ep, D).

Or: the other hand, it would be interesting to know whether the recursive translation
of (weakly) O-optimal progams into (weakly) O*-optimal programs could be
improved. Several interesting results concerning this problem can be found in [17].
In particular, it has been shown there that there are complexity measures (¢, P)
and (¢*, ®*) having the following properties:

(1) for every operator @ € GRO and every function f¢ R, function f possesses

an O-optimal program w.r.t. (¢, ®) if and only if it has an O-optimal program w.r.t.
(¢*, ®*); and

The power of recursive optimizers 295

(2) there is no recursive function translating O-optimal programs w.r.t. (¢, P)
into O-optimal programs w.r.t. (¢*, ®*) for any function fe R.

Corollary 35. Let (¢, D) and (¢*, ®*) be complexity measures, and he R>. Then
there is a function h* € R? such that h-Finwoprt(p, @) < h*-FinwopPT(¢*, ®*) and
the analogous statement is true for h-FinopPr(¢, @), h-Fsworr(e, ®), and h-
Fsort(g, P).

Next, it can be shown that there is no best operator 0* € TEO in the sense that
O0*-FinopPT(p, P) 2 O-FiNorT(¢@, P) for every operator O € TEO (as well as for the
other families introduced above) since we have the following result.

Theorem 3.6. Let {:, @) be a complexity measure. Then, for every operator 0 € TEO,
there is an operaior 0™ € TEO, effectively constructable, such that 0-FiNoPT(p, P)
O0*-FinorT(¢, P).

Finally in this section, we want to investigate the question whether the problem
O-Finopr(¢p, @) #0 is decidable for a fixed measure (¢,) and any operator
0eTEO.

Theorem 3.7. Let (¢, @) be a complexity measure. There is no algorithm deciding for
every operator 0 € TEO whether or not O-FiNnoPT(p, ®)#0 iff there exists some
operator 0 € TEO at all such that 0-Finor1(gp, P) =0.

4. Main results

In this section we start by clarifying the relations between finitely optimal iden-
tification and finitely optimal standardization. The next theorem was suggested by
Freivalds [14].

Theorem 4.1. Let (@, @) be a complexity measure, and € € TEO. Then,
(1) 6-Finacomp(g, @) = FIN n 0-Fsacomp(g, P),
(2) O-Fincome(¢, @) =FINn O-Fscomp(¢p, P),
(3) O-Finort(¢, @) = FIN N O-Fsor1(¢, P),
(4) O0-FinworTt(@, @) =FINn O-Fswort(¢, P).

Theorem 4.1 actually shows that finite identification of fastest programs can be
decomposed. Instead of directly looking for a fastest program in the identification
process, one may finitely synthesize any program for the function to be identified.
After doing so, one can translate this program into a fastest one of the desired type.

Now we point out that the intersection on the right-hand side in Theorem 4.1 is
not trivial.

296 T. Zeugmann

Theorem 4.2. (1) There is a class U € FIN which cannot be finitely weakly O-optimally
identified for every operator G € TEO.

(2) For every complexity measure (¢, ®) there is a function he R? such that
h-Fsacomp(p, @) —FIN # 0.

The proof of Theorem 4.2 shows that finite standardization of fastest programs
is generally more powerful than finite identification of fastest programs due to
topological reasons. In the sequel we shali study the influence of the concrete choice
of the set of admissible operators on the capabilities cf the finite identification of
fastest programs. In order to do this in a verv expressive way, we have to distinguish
a certain class of complexity measures. We say that a complexity measure (¢, P)
satisfies property (+) iff, for all i, xeN, it holds that if &,(x) is defined, then
®D,(x) = ¢;(x). In the following “id” denotes the identity function (i.e., id(x) =x),
and the functions f(x)=id(x) +1, g(x)=id(x)+x+1 are denoted by id+1 and
id+x+1 respectively.

Theorem 4.3. Let (¢, @) be a complexity measure satisfying property (+). There is a
class U*® such that U'*® € 0*-Finacomp(g, D) for an operator 0* € 2,4.,, but
there is no operator € € Q.4 such that U*® € 0-Finacomp(g, D).

Remark. The latter theorem can be generalized up to an infinite hierarchy; i.e., for
any xeN there are a class U and an operator 0%€ Q,4.,., such that Ue
O*-Finacomp(p, @), but for every operator Oc ., it follows Ug
O-Finacomp(¢, D).

The next theorem particularly shows that even operators from 2,4,, are much
more powerful in generating classes of functions having fastest programs than
recursive functions from R

Theorem 4.4. Let (¢,) be a complexity measure having property (+). There is a
class U*® e 0*-FiNacomp(p, D) for some operator O* € Q,4,, such that for every
function h € R? thereis a function from U'*"®’ that is not weakly h-optimal. In particular,
U ¢ h-Finwopt(p, @) for every he R>.

If we restrict ourselves to 0-1 valued functions, the situation changes considerably.
As Theorem 4.4 points out, there are classes of functions uniformly having absolute
0*-compression indices for some operator 0*€ 2,4,,, and containing arbitrarily
complex functions. Thus, U*®’ from Theorem 4.4 cannot be contained in NUM.

On the other hand, the next theorem shows that classes of recursive predicates
being finitely absolutely O-compressed standardizable are in general contained in
NUM if we restrict ourselves to operators from £2,. Hence such classes of recursive
predicates cannot contain arbitrarily complex functions.

The power of recursive optimizers 297

Theorem 4.5. Let (¢, P) be a complexity measure, re R, and let U e 0-
Fsacomp(g, @) n PRy, for some operator O € (3,. Then there is a function h € R?
such that U € h-Fsoprt(¢, @), and, moreover, U € NUM.

We conjecture that Theorem 4.5 remains valid even if we replace “Ce 2,” by
“0 e GRO”. Moreover, it can actually be shown that, for every class U< Ry, of
functions uniformly having absolute O-compression indices for some operator
0 € ,, there is even a function h € R? such that every function from U is absolutely
h-compressed (cf. [30, Theorem 4.1]). Furthermore, it remains open whether in
Theorem 4.5 the assertion that U € h-Fsoprr(p, @) can be sharpened to Ue
h-Fsacomp(¢, @). Neverthelzss, Theorems 4.3-4.5 show that recursive predicates
and arbitrary functions are extremely different with respect to the existence of
absolute compression indices.

With our next theorem we investigate the capabilities of the finite identification,
respectively finite standardization of h-compression indices. Please note that the
proof of the next theorem uses an idea developed by Jantke [20].

Theorem 4.6. There are a complexity measure (¢*, ®*) and a function h* € R* such
that h*-Fincomp(e*, *) # NUM.

Corollary 4.7. Let (¢, @) be a complexity measure. Then, for all sufficiently large
functions h € R? it holds that h-Fsopt(p, @) # NUM.

Finally, we compare the capabilities of weakly @-optimal identification and
O-compressed standardization. This is done by the following theorem.

Theorem 4.8. Let (¢, D) be a complexity measure with property (+). Then there is a
class U < R and an operator 0* € {2,4,, such that U € 0*-FiNwopT(p, @), but there
is no operator 0 € GRO at all such that U € O-Fscomp(¢p, D).

It is an open problem whether Theorem 4.8 can be improved. We conjecture that
O-optimal identification cannot be achieved for every operator 0 € GRO.

Moreover, we conjecture that foi ‘= ficiently large operators O the following strict
inclusions hold:

0-FsacoMmp(g, @) < O-Fscomp(g, @) < O-Fsopt(p, @) < O-Fswort(p, D).

5. Proofs

Before proving Theorem 3.1 we point out that total effective and general recursive
operators have the same capabilities in forming classes of functions uniformly having
(weakly) optimal programs, although they are extremely different in some properties
(cf. [19, 32]). For this purpose, let R, o) ={D; | ¢; € R} for any complexity measure
(¢, D).

298 T. Zeugmann

Proposition 5.1. Let (¢, P) be a complexity measure and let Ge TEQ. Then there is
an operator 0’ GRO such that G(f, n)=0'(f, n) a.e. for any function f € R, o).

The proof of this proposition was given in [31] (cf. Lemma 5.1).

Corollary 5.2. Let (¢, P) be a complexity measure and let € TEO. Let Uc R be a
class such that every function from U is (weakly) O-optimal. Then there is an operator
0' € GRO such that every fisiction from U is (weakly) O'-optimal.

The proof is an immediate consequence of Proposition 5.1.
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let &< TED be arbitrarily fixed. By Proposition 5.1 and [25],
there is an operator 0' € GRO satisfying:
e 0'is monotone (i.c., f; g€ R and f(n) < g(n) a.e. implies 0'(f, n)<G'(g, n) ae.);
and
¢ O(f, n)<0O'(f, n) a.e. for every fe R, o).

Let a function s & R be chosen such that {i0°]i e N} ={¢,,)|i €N}, and for every
ieN there are infinitely j’s satisfying ¢,(;, = i0”.

We set t(n) = max{®,,(n)|i< n} Obviously, € R and, for every ieN, ®@,,(n) <
t(n) a.e.

Suppose there is an optimizer ¢ € P satisfying: ¢, € U implies that (i) is defined
and a weakly @’-optimal program for ¢;. Let z be any fixed program of .

The function g € R is chosen such that, for all i, xeN,

i if x=G,
Pzn(x) =40 if x# pk[D.(i)+1<k Pyu,)(k)<O'(1, k)],
1= @yiy(x) otherwise.

Due to the Recursion Theorem (cf. [27]), there is a number b such that ¢, = @,.
We proceed by showing that the optimizer ¢ fails on b.

Case 1: (b) is not defined. Then we have ®D,(b)>k for all keN. Hence,
Ygv) = @b = b0™. Consequently, ¢, € U. By our assumption, it follows that ¢(b) is
defined, a contradiction.

Case 2: (b) is defined. Then there is a k,€ N such that &,(b)+ 1<k forall k= k,.

Subcase 2.1: There is o k = k, such that ®,,,(k) < €'(1, k). Due to our construc-
tion, it follows that ¢, = b0™. Again we get ¢, € U. According to our assumption,
¥(b) is a weakly O'-optimal program for ¢,. Hence, for almost all i with ¢;;, = b0™
we obtain Dy (x) < 0'(D,(), x) i.0. Since the operator 0’ is monotone, we con-
sequently conclude D,,)(x)=<0"(t,x) i.0o. This is a contradiction to &y, (k)>
0'(t, k) for all k= k,.

Subcase 2.2: There is a k=k, satisfying @Dy, (k)<0O'(t, k). Let x'=
pk [@.(b)+1=<k, &, ,,(k)< O'(1, k)]. By our construction, g,),(x’) is defined. So
we have ¢,(x") =1~ @,;)(x'). Moreover, it again holds that ¢,(0) = b and ¢,(x) =0

The power of recursive optimizers 299

a.e. Hence, ¢, € U. In accordance with our assumption, §(b) has to be a weakly
0'-optimal program for ¢,. Especially the equality ¢, = ¢, has to be satisfied,
which is a contradiction. This proves the theorem. (O

Proof of Theorem 3.2. The wanted complexity measure is defined as follows: ¢ is
a canonical enumeration of all 3-tape Turing machines with input tape, work tape,
and output tape. For all i, x, y we define ®;(x) =y if and only if the read-write head
visits exactly y cells on the work tape during the computation of the ith machine
when x is given as input, provided that &,(x) is considered to be undefined if the
machine loops on a bounded tape segment (cf. [9]). Now let 3 be the ““zero operator”,
i.e., 3(f)=0% for every function fePF. Obviously, 3¢ GRO. In order to prove
assertion (1) of Theorem 3.2 we set U ={0'10°|ieN}. It actually suffices to prove
that U € 3-Finacomp(@, @). Hartmanis and Hopcroft [18] have shown that there
is a function ge R satisfying @.;,=0'10", and ®,;,(x)=0 for all i, xeN. Con-
sequently, g(i) is obviously an absolute 3-compression index of 0'10” (w.r.t. (¢, P)).
The wanted strategy can easily be defined now. We omit details.

Before proving assertion (2) we recall the fact that a class U € FIN cannot possess
a point of accumulation (cf. [24]). In the sequel we shall point out that 3-
Fsacomp(¢, @) even contains a function class U having a point of accumulation
fe U. We set U={010"|i < min,0'10°} U {0™}. Freivalds and Wiechagen [15] prove
that U is of infinite cardinality. Hence 0™ is a point of accumulation. Let g€ R be
chosen such that {¢,;,|i €N} ={0'10"|ieN} U {0}, i#j implies @) * ¢g(), and
®,i)(x) =0 for all i, xeN. Obviously, g(i) is an absolute 3-compression index of
@gi) W.I.t. (9, D). Before defining the wanted optimizer we note that for all fe U
and b=min_f it follows that there is an x<b with f(x)=1. Therefore we have
f=0%if and only if f(x) =0 for all x<b. Let z be the number such that ¢,,,=0".
Then we set

(g(z) if @;(x) is defined for all x<i and ¢;(0)=" - -=¢,(i)=0,
g(uk [@gr)(x) = @i(x) for all x=<i]) if @i(x) is defined for all
x<i and there is a j<i with ¢;(j)=1 and for all

x<i, x#j it holds that ¢;(x)=0,
(undefined otherwise.

W)=,

In order to verify that U € 3-FsacoMp(g, @)(¢), let fe U be fixed, and let i and j
be any fixed programs of £ We have to show that ¢(i) and ¢(j) are defined and
equal, and that (i) is an absolute 3-compression index of f w.r.t. (¢, P).

Case 1: f=0%. In particular, we get ¢;(0)=":--=¢,(i)=0 and ¢;(0)=""--=
¢;(j) =0. Therefore it follows that ¢(i) = ¢(j) = g(z). Due to the definition of the
function g, we obtain that g(z) is an absolute 3-compression index of f

Case 2: f#0%. Then there exists an neN such that f=0"10". Moreover, since
fe U, it must hold that n<min,0"10*. On the other hand, it is olvious that
i, j=min0"10*. So ¢ (i) and ¢ () are defined due to the second case in the above

300 T. Zeugmann

construction. In accordance with the choice of the function g, there is exactly one
k with @k, =0"10%. Consequently, we get ¥ (i) = ¢(j) = g(k), and by construction
it follows that g(k) is an absolute 3-compression index of 0"10%. This proves the
theorem. [J

Proof of Theorem 3.3. The proof of this theorem was given in [31] (cf. Theorem 4
and Corollary 5, p. 629). O

Proof of Theorem 3.4. The proof is an immediate consequence of Proposition 5.1
and the proof of Theorem 10 in [31] (cf. pp. 631-632). O

Proof of Corollary 3.5. This can be proved analogously to Theorem 3.4. O

Proof of Theorem 3.6. Let (@, @) be a complexity measure. Let 0 TEO be any
fixed operator. Due to Proposition 5.1 there is an operator 0'e GRO with

O(£,x)=0'(f,x) a.e.forevery fe R o). (o)

Moreover, by the Speed-up Theorem (cf. [25]), there is a function fe R which is

'-speedable and which can be effectively found. Hence, the function f cannot
possess an O’-optimal program (in fact, f does not have a weakly 0'-optimal
program). Thus we get {f}¢ 0'-Finorr(p,), and consequently, by (a), {f}&
O-Finor1(p, @). Now let j be any fixed program of the function £ The wanted
operator 0% is defined in two steps. First we set

Oy(t, x) = P;(x)+t(x) for every te PF and all xeN.

Obviously, 0,eGRO and {f}e@,-Finor1(p, ¥). Then O*(t, x)=max{€'(s, x),
0\(t, x)} for every t€ PF and all xeN. In accordance with the latter definition and
(a) it follows

0*(t,x)=0(t,x) for all tcPF and aimost all xeN.

Heace, we have O-Finoprr(p, @) O*-FiNnorT(p, #) and since {f}£0-
FinorT(@, @), the inclusion is proper. [

Proof of Theorem 3.7. This can be proved analogously to Theorem 6 in [31]. O

Proof of Theorem 4.1. We show only assertion (2) here. The other assertions can
be proved in an analogous way.

(1) Necessity: Let U e 0-Fincomp(e, ®)(S) for some strategy S. Obviously,
U e FIN(S). The wanted optimizer ¢ is defined as follows: Let i €N, If the sequence
(S(@i))nen finitely converges to a number j, then we set (i) =j. Otherwise, (i)
remains undefined. Now let f< U and let i be any fixed program of f. Hence, ¢; € R
and S(¢7) is defined for all neN. Due to the assumption, the sequence (S(¢?))ncn
converges to a number j and j is an O-compression index of f w.r.t. (¢, @). Moreover,

since S(¢7)=S(¢¢) for all neN and every program b of f, we obtain: U e O-
Fscome(p, @)(¢). ‘

The power of recursive optimizers 301

(2) Sufficiency: Let U € FIN(S) and U € 6-Fscomp(¢, @)(). The wanted strategy
S’ satisfying U € 0-Fincomp(¢, @)(S') is defined as follows:

SU™) S if n=0o0r n>0and n<ux[S(f*") =S/},
Y(S(f")) if n>0and n=pux [S(f*7")=S(f)].

it remains to verify that the strategy S’ satisfies the desired requirements. In order
to do so, let '€ U. We have to prove that the sequence (S'(f")).n finitely converges
to an @-compression index of f w.r.t. (¢, ®). Since fe U, it follows that S(f™) is
defined for all neN. Furthermore, the sequence (S(f")).n finitely converges. As
long as the function f is not identified by the strategy S, the strategy S’ works exactly
as S. Let now n=ux [S(f*"") = S(f*)]. Due to the assumption that U € FIN(S),
it follows that g~ =f. Consequently, S'(f")=y(S(f")) is defined. Moreover,
#(S(f")) is an O-compression index of f w.r.t. (¢,). Since S(f*')=S(f*) tor
all k= n, we obtain S'(f*~') = S'(f*) for all k> n. This proves the theorem. [

Proof of Theorem 4.2. Assertion (1) directly follows from the proof of Theorem 3.1
since the class U={f|f€ R, ¢r0 =1, f(x)=0 a.e.} is obviously contaired in FIN.

The proof of assertion (2) is quite similar to that of Theorem 3.2, part (2). The
only difficulty we have to overcome is the generalization to any complexity measure.
For this purpose let (¢, @) be an arbitrarily fixed complexity measure. We 23ain
set U ={0'10°}i<min,010°}u {0™}. Since U is infinite, one obtains that 0 is a
point of accumulation. Therefore, U € FIN.

It remains to show that there is a function h € R? such that U € h-Fsacomp(g, P).
Let g € R be chosen such that {¢,(;,]i €N} = {0'10%}i e N} U {0}, i # j, implies ¢g(;) #
@z()» and g(i)= i for all i eN. In order to define the wanted function h, we proceed
as follows: Set t(n) =max{®,(x)|i<n, x < r} and define h(n, m)=t(n)+m for
all n,meN.

Claim. Letfe Uandi* = pi{@g =f1. Then g(i*) is an absolute h-compression index
of fw.r.t. (¢, D).

Let x € N. We set m = max{g(i*), x}. Consequently, m=g(i") = i* and m = x. Due
to the definition of the function 1, we obtain:

B, i)(x) < max{Py+)(2)| < m}
<smax{®P,(2)|i<m, z< m}
= t(m) = t(max{g(i*), x}).

Let j be any number satisfying f(y) = ¢;() for all y <max{g(i*), x} = m. Then we
have

Byim(x) < t(m) < t(m) + D;(m) = h(m, $;(m)),

i.e., g(i*) is an absolute h-compression index of f w.r.t. (p, P). Let z be the number
satisfying ¢,(.,=0".

302 T. Zeugmann

Let ¢ be as in the proof of Theorem 3.2. In the proof of Theorem 3.2, it was
shown that U € 3-Fsacomp(@, @)(¥), where 3 was the operator that always returned
the everywhere-zero function. Clearly, U € h-Fsacomp(e, @)(¢). O

Proof of Theorem 4.3. The desired function class is defined as follows: U®*® =
{f1feR, ¢p0 =1 Yx Pse)(x)<f(x+1)}. This class was first studied in [11]. Now
it suffices to set O*(f x)=max{f(z)|z<x+1}. Obviously, *c 2,4.,. Due to
property (+), one directly obtains that f(0) is an absolute 0*-compression index of
f for every function fe U®®). So U®® can trivially be identified in the sense of
O0*-FINACOMP.

The second part of the proof is only sketched here. All the details can be found
in [30] (cf. Theorem 4.2, p. 587, and Lemma 3.9, pp. 578-579). The main idea of
this proof works as follows. First, one shows that every class of functions uniformly
having absolute 0-compression indices for some operator 0 € ;4 can be identified
by a strategy S € R working consistently on all function f€ R (i.e., U € R-Cons, cf.
[30, p. 562]). Then it can be proved that the class U®® defined above cannot
belong to R-Coms. So we get the result that for every operator O € 2,4 there is a
function from U*® which is not absolutely O-compressed. This yields the desired
assertion. [J

Proof of Theorem 4.4. We set again U® ={f|feR, g0 =f, VX P/ q(x)<
f(x+1)}. So the first part follows from Theorem 4.3.

Note that the second part is proved using an idea and the proof techniques
explained in [29]. This part of the proof is measure-independent. Let (¢, @) be
fixed. Let A;F; be a canonical enumeration of all finite functions exactly defined at
an initial segment {0, 1,..., n} of natural numbers. Additionally, let the functions
s€ R? and p € R? be chosen such that '

@50 (¥) = 0i((x, y)) for every i, x, and y,
and
F,(x) if xeArgF,,
¢i(x) otherwise.

Pp(iol(X) = {

Here s is the s; function of [27] and p is a table patching function.

For the following let h € R? be arbitrary and, without loss of generality, let h be
monotone in the second argument. Furthermore, let r€ R be a strongly monotone
function satisfying @, = ¢,;, for all icN. Hence Val r is recursive. Moreover, for
any jeN there is at most one keN such that r(k)=j. We define Ch o= for all
Jj€N. For every n,x=0, and for every jeN we set C’,, = if j& Val r; otherwise
(i.e., there is a k€N such that r(k) =) define

C{l,x = {iln si< X, i€ U C{l,_v’ Ql'(x)S max h(x’ ¢p(s(k,i+l).v)(x))}'

y<x v<x

The power of recursive optimizers 303

Now let the function g€ R be chosen such that, for every n, x, jeN

s(k, n) if there is a k with r(k)=j,
0 otherwise

£

¢g(j)(<ns 0)) = {

and, for x>0,

1+max{g,(x)|ie C} }+ D, 0(x—1)
@eH((n, x)) = if there is a k such that r(k)=j,
0 otherwise.

In accordance with our construction we obtain that ¢,;, € P for every jeN. Due to
the Recursion Theorem [27], there is a number b such that @,), =@;. In the
sequel we shall prove that ¢, € R, Ax@,({0, x)) € U'*® and that Axe,({0, x)) is not
weakly h-optimal.

Claim 1. ¢,€R.

Since (.,.) is a recursive encoding of N’ to N, it suffices to show ¢,({(n, x)) is
defined for all n, x €N. First we show inductively that ¢,((0, x)) is defined for every
x €N. Due to the construction it holds that

@5({0, 0)) = @g(r(5))((0, 0)) = s(b, 0).

Since s € R?, we get that ¢,({0, 0)) is defined. Let now ¢,((0, x —1)) be defined. We
have to show that ¢,((0, x)) is defined. By construction we obtain

@5({0, x))=l+maX{so;(x)Ii<x, iz U CiY, d.(x)

y<x

= m<ax h(x, ‘pp(s(b,m),u)(x))} + Dy p0)(x—1).
By assumption, ¢,({0, x —1)) is defined. Therefore, ®(;0)(x —1) must be defined.
It remains to show that C;%’ is computable for all y <x, and that @((s,i+1),0)(X)
is defined for every i <x satisfying i ,<. C¢;’ and every v<x. However, for
this purpose it suffices to show that @,(;5.1).0)(X), Po(s6.2.0)(X)s - - - » Pp(siber,0)(¥)
are defined for every i <x. By the choice of the functions p and s, it is enough to
verify that ¢, ({x, x)), ¢,({x—1, x}), ..., @s({1, x)) are defined. Due to the construc-
tion, @, ((x, x)) = 1+ @, 0)(x — 1) since there is no i with x <i <x. Hence, ¢,({x, x})
is defined. Furthermore, we get ¢,({(x—1, x)) =1+max{g;(x)|x—1<i<x and
®;(x) <max,, h(x, € psp,i+11.0)/(X¥))} + Psroy(x —1) since the only i satisfying
x—1=<i<x is x—1, and, obviously, x—1¢J,<, C:2},. Consequently, it suffices
to show that ®,s,x).0)(x) is defined for every v <x. Moreover, D (s(bx)0)(X) 8
defined for every v < x iff @, x)..)(X) is defined for every v <x. On the other hand,
Pp(s(bi),0)(X) is defined if @,({x, x)) is defined, and this has already been proved.
In a completely analogous way, ¢p({(x -2, X)), . .., ¢5({1, x)) is shown to be defined

now. Hence, Ax¢,({0, x)) € R, and consequently, @ € R.

304 T. Zeugmann

Claim 2. For all xeN the function Ang,({n, x)) is total.

By construction we get ¢,({n, 0)) =s(b, n), hence it is defined. Furthermore, for
n=x>0, in accordance with the construction, it follows that ¢,({(n, x))=
1+ @, ,0)(x 1), and thus defined. Now let Ang,({n, x)) € R for every x'<x. We
have to prove that Ang,({n, x)) € R. As it has already been proved, ¢,({(n, x)) is
defined for every n=x. Now let n <x. In order to verify that ¢,({n, x)) is defined,
it suffices to show Dp(s(s,i+1),,)(X) is defined for all i <x and v <x. This can be done
in a completely analogous way as in Claim 1. We omit details. Hence, ¢, € R.

Claim 3. Ax¢,((0, x)) € U(ep, D).

First we note that ¢, ({0, 0)) = @4(5,0)(0) = s(b, 0). Due to our construction it immedi-
ately follows that

(ps(b‘o)(x+ 1) = (Pb(«), x+ l)) > ¢s(b,0)(x) for all xeN.

This yields Claim 3.
Finally we show that the following claim holds.

Claim 4. Ax¢,({0, x)) is not weakly h-optimal.

Let ¢; = Ax¢,((0, x)). We have to show that there are infinitely many programs z
satisfying ¢; = ¢, and @;(x)> h(x, P,(x)) a.e. For this purpose, we first note that
Ci¥-{0,1,...,n—1}=Cy®. Moreover, it is obvious that for every n there is a
u, such thatif i<n and ie U, C3}, then e, <, C&Y . Thus, for i <n it holds
that i ¢ C{’ for y> u,. So we have shown that C{’= C/% for every x> u,. Due
to the construction one now immediately obtains

({0, x)) = ¢ ((n, x)) for every n and x> u,. (1)

Furthermore, we claim that ®@;(x)>max <, h(x, @p(s(,i+1).0)(x)) for every x>i. In
order to see this, suppose the converse. Hence, there is an x’ such that ie C(',ff?.
Consequently,

@5((0, x")) =1+ max{g;(x")|i<x' and i U<, C52’ and
D, (x") <=max h(x', ®p(s(p,i+1).0){x"))}

+ Dy p0)(x" 1)
> @i(x')
which is a contradiction since ¢; = Ax¢, ({0, x)). Moreover, (1) yields that there is
a v; such that @,p,i+1),0)(X) = ¢5((0, x)) for every xeN. Thus, it suffices to set
z=p(s(b,i+1), v;) to obtain one desired program z This process can be iterated

since h is monotone in the second argument, and so one finds infinitely many
programs z with the wanted properties. O

Proof of Theorem 4.5. Let (¢, @), re R and 0 € £,, be arbitrarily fixed and suppose
that U € O0-Fsacomp(g, ®)(¢) N PRy ,;. In [30, Theorem 4.1], it has been shown
that U e NUM then. This result can be obtained by proving that, under the above
assumptions, U is identifiable by a strategy working reliably on the set of all total

The power of recursive optimizers 305

functions (i.e., U € TF-REL). Then it is not hard to show that TF-RELN PRy, =
NUMAN PR,;. (For details the reader is referred to [30, pp. 582-583).) Since
U € NUM, there is a function g € R, g(i) =i for all i such that U = {¢,,)|ieN}< R.
We define a function ¢ as follows: for all neN: t(n) =max{®,;)(x)|i<n, x<n}.
As in the proof of Theorem 4.2 it now follows:

D, i) (x) < t(max{g(i), x}) for all xeN. (o)
Using the operator 0 ¢ {2, we define an operator 0* as follows: for all fe TF we set
0*(f, x) =max{0(p, x)|pe TF, Vz =< r(x) p(z) < max{f(z), x}}.

Obviously we have 0* € £, and O(f, x) < 0*(f, x) for every fe TF and x eN. Now
we set t*=0%(¢t) and define h(n, m) = t*(n) + m.

Claim. U € h-Fsort(¢, @)(¢).

For this purpose, recall that for every ¢; € U it holds that (i) is defined and is
an absolute 0-compression index of ¢;. In particular, for every j satisfying ¢; = ¢,(j)
we obtain: :

D, i)(x) < O(D,(;), max{y(i), x}) for all xeN. ®)
Using (a) and the properties of the operator 0* we get from (B):

Dy iy (x) < OF(Dy), max{y(i), x}) < O%(t, x) = t*(x) a.e. y)
Let k be any program of ¢;. By () it follows

D, (x) < t*(x) < t*(x)+ D (x) = h(x, D (x)) a.e.

Thus (i) is an h-optimal program for ¢;. This proves the theorem. []

Before proving Theorem 4.6 we quote the Operator Recursion Theorem discovered
by Case [10].

Operator Recursion Theorem. Let O be an effective operator. Then there is a strictly
increasing function t € R such that O(t, (i, x)) = ¢,;)(x) for all i, xeN.

Proof of Theorem 4.6. (1) NUM - h*-FiNncomp(p*, @*) # 0@ directly follows from
he proof of Theorem 3.1, independently of the complexity measure (¢, ®*) and
h*e R

(2) There are a complexity measure (¢*, ®*) and a function h*e R? such that
h*-Fincomp(g@*, @*) - NUM # 0.

306 T. Zeugmann

Let (¢, @) be any fixed complexity measure. We set ¢* = ¢. Furthermore, we
define an operator @ as follows:

t(i) if x=0,

0(1‘,("-x))={¢'_(x)+¢i(x)+t(i)+l if x>0

for all functions te€ P. Obviously, O is effective. Due to the Operator Recursion
Theorem there is a strictly increasing function t*€ R such that

O(t*, (i, x)) = p+i(x) for every i, xeN.

Since the function t* is strictly increasing, we have that Val t* is recursive. Now
we are ready to define @*: for every j and x we set

0 if je Val t*, x=0,
DF(x)=4{ Pi(x) if jeValt*, j=1*(i), x>0,
@;(x) otherwise.

Claim 1. (¢*, @¥*) is a complexity measure.

Case 1: j#Val *. Due to the construction it holds th: ¥ = ;. So we have
Arg o = Arg ¢; = Arg @, = Arg @7, and, obviously, &;(x) =y is recursive.
Case 2: jeVal t*. Then there is exactly one number i such that *(i) =j. Hence,

0 if x=0,

D5 (x) ={<P,-(x) if x>0.

On the other hand we have

@F(X) = @p(iy(x)

t*(i) if x=0,

=0, G, "»={¢.-(x)+«p.-(x)+t*(i)+l if x>0.

Therefore, Arg ¢ = Arg &7 since D¥(x)=®D,(x) and PD,(x) is defined iff ¢;(x) is
defined. Moreover, since Val ¢* is recursive, one directly obtains that the predicate
“@¥(x)=y” is recursive for all j, x and y. This proves Claim 1.

Now we define the wanted class Ug+ as follows:

Us={f|feR, f is strictly increasing, ¢/0)=1, ¥x @},,(x)<f(x)}.
Claim 2. U;«g NUM.

Suppose the converse, i.e., there is a function g such that Ug« < {¢,;)|ieN}c R.
Let £(0) = @g(0)(0), and let f(x) = @ (x)(x)+f(x—1) for all x> 0. Obviously, f is
strictly increasing. Due to [30] (cf. Lemma 3 in the proof of Theorem 4.1, p. 584)
there is a program i such that ¢, =f and @; is also strictly increasing. Since

t*(i) if x=0,

Prrin(X) = {¢,-(x) +f(x)+t*(i)+1 if x>0,

The power of recursive optimizers 307

we obtain that ¢,+;(0) = t*(i) and that @, is strictly increasing. Furthermore, since

D iy (x) = Di(x) < Di(x) + @i(x) + t*() + 1= @p(iy(x), x>0
and
DE)(0) =0< r*(i) = ,~;)(0),

it follows that @« € Ug».
In accordance with our assumption, there is at least one k such that @« = @g(x)-
On the other hand, we get

@ri)(k) = Di(k) +f(Kk)+ t*(i) + 1 # @gi)(K),
a ccatradiction. This proves Claim 2.

Claim 3. There is a function h* € R* such that f(0) is an h*-compression index for
every function f€ Ug~.

We define: h*(n, m) =max;<,{¢:(n)| @¥(n) < m}. According to this definition we
have ¢;(n)=<h*(n, ®¥(n)) for all i and n=i. Let now fe Uy+ and let j be any
program of £ We set m =max{f(0), j, x}. Consequently, m=j, m=x. Since the
function f is strictly increasing and satisfies @ o)(x) < ¢y()(x) for all x €N we obtain

DF0)(x) < @r0)(x) = f(x) = ¢;(x) < g;(m) < h*(m, ®F(m)),

and thus f(0) is an h*-compression index of f w.rt. (¢*, @*). Now let f be
given as input. Then the wanted strategy S outputs f(0). Hence, Ug+€
h*-Fincomp(e*, #*). O

Proof of Corollary 4.7. The proof is an immediate consequence of Theorem 4.6, the
fact that

h-Fincompt(p, @) < h-Finoprt(¢p, @) < h-Fsort(¢, P),

and Theorem 3.3 as well as Theorem 3.1. [
Before proving Theorem 4.8 we define identification in the limit.

Definition. Let U < R. Then U is called identifiable in the limit if there is a strategy
S € P such that for every function fe U and every neN the value S(f") is defined
and the sequence (S(f"))..n converges in the limit to a number j such that ¢;=f
Let EX denote the family of all classes U < R identifiable in the limit. The iden-
tification type EX is sometimes also denoted by LIM (e.g.,[30, 31]) or GN (e.g., [4]).

Proof of Theorem 4.8. We define: U={f|feR, ¢r0 =1, Pro(x)=<f(x+1)io.}.
Then O* is exactly the same operator as in the proof of Theorem 4.3. Then
U € 0*-FinwopT(gp, ®)(S), where S is the strategy which, on £, simply outputs f(0).
In order to verify that there is no operator @ € GRO such that U € 0-Fscomp(g, @),

308 T. Zeugmann

we prove that for every operator 0 € GRO there must be a function from U not
being O-compressed. For this purpose, let us suppose the converse, i.e., there is an
operator @ such that every function from U has an O-compression index. In [8] it
has been proved that then U is identifiable in the limit by a strategy working reliably
on R. On the other hand, let U,={f|fe R, f(x)=0a.c.}. Obviously, Uye NUM,
and hence U is also contained in EX(S) for a strategy even working reliably on
R. Moreover, due to the Union Theorem in [8] it follows that U u U, EX. The
proof is finished when we show that there is no strategy S identifying Uu U, in
the limit since this yields a contradiction. This is done by using an idea of Gold
[16] which has been refined by Barzdin [4, Chapter I, pp. 82-88]. Nevertheless, the
proof might even he shorter by using the techniques of [12].

Suppose, Uu Jpe FX(S), whereas, without loss of generality, S€ R. Let the
function re R be chosen such that ®; = ¢,(;, for all i and r is strictly monotone.
Furthern re, let the function g€ R be chosen such that

i if there is an i such that r(i) =}

@e(0)= {0 otherwise
and proceed as follows: Compute S(¢p3(;)) = n,. Then define @;(;)(2), @z(;(3)....,
to be zero until a k, is found such that either

(@) S(c(@g(;)(0)00"))# n,, or

(B) S(c(@g;»(010%)) # n, .

Since the strategy S is supposed to identify U u U,, either (o) or (8) must happen.
If (o) happens, then define ¢,;(1) =0, and if () happens, then define ¢,;)(1)=1.
Moreover, we set ¢g;)(k,+2)=¢;j(k,+1) if @;(k;+1) is defined. Otherwise,
®e(j)(ki +2) remains undefined and ¢,;)(x) will be undefined for all x=k,+2. I{
@g)(ki+2) is defined, we proceed as follows: Compute S(«p:};,z)=n,. Define
®g)(k1+3), ... to be zero until a k, is found such that either

(a) S(c(eg;700%))# n,, or

(B) S(c(e1;710%)) # n,.

Again, (a) or (B) must happen since the strategy S is supposed to identify in
particular U,. If (o) happens, then set ¢,(;)(k,+3) =0, otherwise define ¢,;)(k,+
3)=1. Furthermore, we set ¢,)(k,+3+k,)=¢;(k;+2+k,) if oi(ky+2+k,) is
defined. Otherwise, ¢,(;,(x) remains undefined for all x=k,+3+k,.

By iteration of this construction we define ¢,;, completely. Due to the Recursion
Theorem there is a number b such that ¢, = ¢,. By the construction we get
©(0) = b. Let S(¢3) =n, and k, may satisfy either

(a) S(c(b00*1))#n,, or

(B) S(c(b10%))# n,.

Thus ¢, (x) is defined for all x < k, + 1. Furthermore, &, (k,+1) = @rv)(ky +1), hence
defined. So we get

op(k+2) = ‘Pr(b)(kl +1)= D, (k,+1).

Inductively one now easily shows that ¢, € U. On the other hand, the strategy S

The power of recursive optimizers 309

cianges its hypothesis infinitely often if ¢, is given as input. This proves the
theorem. []

References

{1] D.A. Alton, Non-existence of program optimizers in several abstract settings, J. Comput. System
Sci. 12 (1976) 368-393.

{2] D.A. Alton and J.L. Lowther, Non-existence of program optimizers in an abstract setting, in: Proc.
Symp. on Programming, Paris, 1974, Lecture Notes in Computer Science 19 (Springer, Berlin, 1974)
96-105.

[3] D. Angluin and C. Smith, A survey of inductive inference: theory and methods, Comput. Surveys
15 (1983) 237-269.

[4] Ya.M. Barzdin, ed., Theory of Algorithms and Programs; I, II, III (Latvian State University, Riga,
1974, 1975, 1976) (in Russian).

[5] Ya.M. Barzdin, Inductive inference of automata, functions and programs, in: Proc. Internat.
Mathematical Congress (1974) 455-460 (in Russian); or Amer. M 1th. Soc. Transl. 109 (1977) 107-122
(in English).

[6] M. Blum, Machine independent theory of complexity of recursive functions, J. ACM 14 (1967)
322-336.

[7] M. Blum, On the size of machines, Inform. and Control 11 (1967) 254-265.

[8] L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Inform. and Control
28 (1975) 122-155.

[9] A.Borodin, Computational compler’. * and existence of complexity gaps, J. ACM 19 (1972) 158-173.

[10] J. Case, Periodicity in generation of automata, Math. Systems Theory 8 (1974) 15-32.

[11] J. Case and S. Ngo-Manguelle, Refinements of inductive inference by popperian machines, Tech.
Rep. 152, Dept. of Computer Science, State University of New York at Buffalo, 1979.

[12] J. Case and C. Smith, Comparison of identification criteria for machine inductive inference, Theoret.
Comput. Sci. 25 (1983) 193-220.

[13] J. Chen, Tradeofs in the inductive inference of nearly minimal size programs, Inform and Control
52 (1982) 68-86.

[14] R.V. Freivalds, Personal communication, 1983.

[15] R.V. Freivalds and R. Wiehagen, Inductive inference with additional information, J. Inform. Process.
and Cybernet. (EIK) 15 (1979) 179-185.

[16]) E.M. Gold, Language identification in the limit, Inform. and Control 10 {(1967) 447-474.

[17] J. Hartmanis, Computational complexity of formal translations, Math. Systems Theory 8 (1975)
156-166.

[18] J. Hartmanis and J.E. Hopcroft, An overview of the theory of computational complexity, J. ACM
18 (1971) 444-475.

[19] J. Helm, On effectively computable operators, Z. Math. Logik Grundlag. Math. 17 (1971) 231-244.

[20] K.P. Jantke, Personal communication, 1985.

[21] E. Kinber, On comparison of limit identification and sta:.Jardization of general recursive functions
(in Russian), in: Ya.M. Barzdin, ed., Theory of Algorithms and Programs II (Latvian State University,
Riga, 1975) 45-57.

[22] R.Klette and R. Wichagen, Researchin the theory of inductive inference by GDR mathematicians—a
survey, Inform. Sci. 22 (1980) i+9-169.

[23] L.H. Landweber and E.L. Robertson, Recursive properties of abstract complexity classes, J. ACM
19 (1972) 296-308.

[24] R. Lindner, Algorithmische Erkennung, Dissertation B, Friedrich-Schiller-Universitiit, Jena, 1972.

[25] A.R. Meyer and P.C. Fischer, On computational speed-up, in: Conf. Rec. Ninth Ann. IEEE Symp.
on Switching and Automata Theory (1968) 351-355.

[26] D. Osherson, M. Stob and S. Weinstein, Systems that Learn (MIT Press, Cambridge, MA, 1986).

[27]1 H. Rogers Jr., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York
1967).

310 T. Zeugmann

[28] B.A. Trakhtenbrot and Ya.M. Barzdin, Finite Automata-Behavior and Synthesis, Fundamental
Studies in Computer Science 1 (North-Holland, Amsterdam, 1975).

[29] P. Young, Easy constructions in complexity thecry, Proc. Amer. Math. Soc. 37 (1973) 555-563.

[30] T.Zeugmann, A posteriori characterizations in inductive inference of recursive functions, J. Inform.
Process and Cybernet. (EIK)) 19 (1983) 559-594.

[31] T. Zeugmann, On the synthesis of fastest programs in inductive inference, J. Inform. Process. and
Cybernet (EIK) 19 (1983) 625-642.

[32] T. Zeugmann, On the nonboundability of total effective operators, Z. Math. Logik Grundlag. Math.
30 (1984) 169-172.

