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ABSTRACT

Probabilistic computations and frequency computations were invented for the same pur-
pose, namely, to study possible advantages of technology involving random choices. Re-
cently several authors have discovered close relationships of these generalizations of deter-
ministic computations to computations taking advice. Various forms of computation tak-
ing advice were studied by Karp and Lipton [1], Damm and Holzer [2], and Freivalds [3].
In the present paper, we apply the nonconstructive, probabilistic, and frequency meth-
ods to an inductive inference paradigm originally due to Gold [4] and investigate their
impact on the resulting learning models. Several trade-o�s with respect to the resulting
learnability are shown.

Keywords: probabilistic computations; frequency computations; nonconstructive meth-
ods; algorithmic learning; inductive inference

1. Introduction

Probabilistic algorithms and automata were invented to simulate random processes

in living organisms. A fundamental question related to this research is whether

or not this simulation is adequate, i.e., whether or not indeterministic processes in

living beings are probabilistic in the sense described by Pascal and Fermat. Quantum

theory showed that indeterministic processes in the microworld surely need a more

complicated description. This makes the usage of such generalized computations a

practical problem in Computer Science.

Frequency algorithms were introduced by Rose [5] with a clear aim to have

a completely deterministic mechanism with properties of probabilistic algorithms.
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Frequency computations became popular because of their relation to the notion of

autoreducibility.

In his paper [3], Freivalds examined nonconstructive proofs in computation the-

ory and introduced the notion of nonconstructive computation. The notion was

based on Freivalds' observation of nonconstructive proofs as of a construction of

algorithms that do not rely exclusively on the �natural� input data and their own

internal mechanisms, but utilize some additional �help from the outside� as well.

For instance, consider a version of B	arzdi�n²' lemma [6] that sets an upper bound of

log n on Kolmogorov complexity of characteristic words of recursively enumerable

sets. The proof of this lemma is nonconstructive (which is natural due to the Kol-

mogorov complexity notion used), but in [3] it is reinterpreted as a construction of

an algorithm that utilizes an amount of log n of additional information.

In [3] a simple de�nition of nonconstructive computation was introduced, consid-

ering language recognition by �nite automata using additional information. It was

pointed out that other computational models could be utilized in nonconstructive

computation, too. Clearly, Freivalds' [3] de�nitions should be revised in this case.

As far as inductive inference is concerned, nonconstructive proofs are not un-

common. The �formal theory� of inductive inference due to Solomono� [7, 8] is

based on the notion of algorithmic probability, an uncomputable function closely

related to Kolmogorov complexity [6]. The learning model considered in this paper

is Gold's [4] identi�cation in the limit model. This model is less abstract and more

closely related to computational models than Solomono�'s [7, 8] �formal theory.�

However, nonconstructive proofs can be found here as well.

For example, Case and Smith [9] explicitly mention that the proof of their The-

orem 2.3 is nonconstructive. Indeed, it is based on observation of two possible cases

in a certain construction such that there is no way to determine which of the cases

actually holds. A similar proof has, for example, Theorem 22 in [10]. Using the

terminology of [3], we may say that the amount of nonconstructivity assumed in

these proofs is 1 bit.

On the other hand, some versions of classical identi�cation criteria utilizing �ad-

ditional information� have already been considered (see, for example, [11, 12, 13]).

However, the additional information considered is usually of some speci�c kind

and/or the objects of identi�cation are limited to a certain class (say, identi�ca-

tion of recursive functions). Second, to our knowledge there were no references to

formalizing nonconstructive proofs in the existing literature.

In the present paper we study the problem of what impact do probabilistic

computations and frequency computations have on inductive inference paradigms.

The resulting learning models are compared to one another. Additionally, a learning

model is considered in which the learner receives in addition to the usual graph of

a target function a certain amount of nonconstructive information.
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2. Notations and De�nitions

Unspeci�ed notations follow Rogers [14]. In addition to or in contrast with [14] we

use the following. Let N = {0, 1, 2, . . .} be the set of all natural numbers, and let

furthermore N+ = N \ {0} be the set of all positive natural numbers. We use N∗ to

denote the set of all �nite sequences of natural numbers. By |S| and ℘(S) we denote
the cardinality and power set of a set S, respectively. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and #
denote the empty set, element of, proper subset, subset, proper superset, superset,

and incomparability of sets, respectively.

Let n ∈ N be such that n ≥ 2. The set of all partial recursive func-

tions and of all recursive functions of one respectively n variables over N is de-

noted by P, R, Pn, Rn, respectively. Note that the recursive functions are total.

For every f ∈ P we use dom(f) to denote the domain of the function f , i.e.,

dom(f) = {x | x ∈ N, f(x) is de�ned}. By Val(f) we denote the range of f , that

is, Val(f) = {f(x) | x ∈ dom(f)}.
Any function ψ ∈ P2 is called a numbering. Let ψ ∈ P2, then we write ψi instead

of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as Rψ = Pψ ∩ R. So if f ∈ Pψ,
then there is a number i ∈ N such that f = ψi. If f ∈ P and i ∈ N are such that

ψi = f , then i is called a ψ�program for the function f . Let ψ be any numbering, and

let i, x ∈ N; if ψi(x) is de�ned (abbr. ψi(x)↓ ) then we also say that ψi(x) converges.
Otherwise, ψi(x) is said to diverge (abbr. ψi(x)↑ ). Let ψ ∈ P2 and f ∈ P; then we

use minψ f to denote the least number i such that ψi = f .

A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [14]) if Pϕ = P,
and for every numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i)
for all i ∈ N. We use Göd to denote the set of all Gödel numberings. For further

information concerning Gödel numberings and their properties we refer the reader

to [15, 14].

By NUM = {U | there is a ψ ∈ R2 such that U ⊆ Pψ} we denote the family of

all subsets of all recursively enumerable classes of recursive functions. Furthermore,

we use NUM! = {U | there is a ψ ∈ R2 such that U = Pψ} to denote the family of

all recursively enumerable classes of recursive functions. The elements of NUM! are
referred to as indexed families.

Let 〈. . .〉 be any recursive encoding of N∗ onto N (cf. Rogers [14]). We write fn

instead of 〈(f(0), . . . , f(n))〉, for all n ∈ N and all f ∈ R.

A sequence (jn)n∈N of natural numbers is said to converge to the number j

if jn = j for all but �nitely many n ∈ N. Moreover, a sequence (jn)n∈N of natural

numbers is said to �nitely converge to the number j if it converges to j and for

all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n. Now we are ready to de�ne the

learning models considered in this paper.

2.1. Deterministic Learning of Recursive Functions

When learning recursive functions growing initial segments fn, where n = 0, 1, 2, . . .,
are fed to the learning algorithm, henceforth called strategy. For each initial segment
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the strategy has then to compute a hypothesis in which is a natural number. These

hypotheses are interpreted with respect to a suitably chosen hypothesis space ψ

which is a numbering. The interpretation of the hypothesis in is that the strategy

conjectures program in in the numbering ψ to compute the target function f . Fur-

thermore, one requires the sequence (in)n∈N of all computed hypotheses to converge

to a program i correctly computing the target function f , i.e., ψi = f . A strategy

learns a class of recursive functions provided it can learn every function from it. The

model just explained is basically learning in the limit as introduced by Gold [4].

Many variations of this model have been studied (cf., e.g., [9, 16, 17, 18], and the

references therein). More formally, we have the following de�nition.

De�nition 2.1 (Gold [19, 4]) Let U ⊆ R and let ψ ∈ P2. The class U is said to

be learnable in the limit with respect to ψ if there is a strategy S ∈ P such that for

each function f ∈ U ,

(1) for all n ∈ N, S(fn) is de�ned,
(2) there is a j ∈ N with ψj = f and the sequence (S(fn))n∈N converges to j.

If U is learnable in the limit with respect to ψ by S then we write U ∈ LIMψ(S).
Furthermore, let LIMψ = {U | U is learnable in the limit with respect to ψ}, and
let LIM be the collection of all classes learnable in the limit with respect to some

hypothesis space, i.e., LIM =
⋃
ψ∈P2 LIMψ.

Some remarks are mandatory here. Let us start with the semantics of the hy-

potheses produced by a strategy S. If S is de�ned on input fn, then we always

interpret the number S(fn) as a ψ�number. This convention is adopted to all the

de�nitions below. Furthermore, it is easy to show that LIMϕ = LIM for every Gödel

numbering ϕ (cf. [20, 9]). In the above de�nition LIM stands for �limit.� Moreover,

in accordance with the de�nition of convergence, only �nitely many data of the

graph of a function f were available to the strategy S up to the unknown point

of convergence. Therefore, some form of learning must have taken place. Thus, the

use of the term �learn� in the above de�nition is indeed justi�ed. Note that instead

of LIM sometimes the notation EX is used in the literature, where EX stands for

�explain� (cf., e.g., [9, 17]).

In general it is not decidable whether or not a strategy has already converged

when successively fed some graph of a function. With the next de�nition we consider

a special case where it has to be decidable whether or not a strategy has learned its

input function. That is, we replace the requirement that the sequence of all created

hypotheses �has to converge� by �has to converge �nitely.�

De�nition 2.2 (Gold [4], Trakhtenbrot and Barzdin [21]) Let U ⊆ R and

let ψ ∈ P2. The class U is said to be �nitely learnable with respect to ψ if there is

a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is de�ned,
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(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N �nitely converges

to j.

If U is �nitely learnable with respect to ψ by a strategy S, we write U ∈ FINψ(S).
The learning types FINψ and FIN are de�ned analogously to the above.

It is easy to prove that FINϕ = FIN for every Gödel numbering ϕ. Moreover, we

have FIN ⊂ LIM (cf., e.g., [18]). Since we are mainly interested in �nite learning in

the present paper, we shall consider all variations de�ned below for �nite learning

only.

In the following modi�cation of De�nition 2.2 we require the strategy to �nitely

converge to minψ f instead of converging �nitely to any program for the target func-

tion f . This modi�cation goes back to Freivalds [22] and Kinber [23] who considered

it for learning in the limit.

De�nition 2.3. Let U ⊆ R and let ψ ∈ P2. The class U is said to be �nitely

ψ-minimal learnable with respect to ψ if there is a strategy S ∈ P such that for each

function f ∈ U ,

(1) for all n ∈ N, S(fn) is de�ned,
(2) the sequence (S(fn))n∈N �nitely converges to minψ f .

If U is �nitely ψ-minimal learnable with respect to ψ by a strategy S then we

write U ∈ MIN-FIN ψ(S). The learning types MIN-FIN ψ and MIN-FIN are de�ned

analogously to the above.

De�nition 2.4. Let U ⊆ R and let ψ ∈ P2. The class U is said to be �nitely

ψ-nearly minimal learnable with respect to ψ if there is a strategy S ∈ P and a

constant c ≥ 0 such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is de�ned,
(2) the sequence (S(fn))n∈N �nitely converges to a program i such that ϕi = f

and i ≤ minψ f + c.

If U is �nitely ψ-nearly minimal learnable with respect to ψ by a strategy S then we

write U ∈ NEARLY-MIN-FINψ(S). The learning types NEARLY-MIN-FINψ and

NEARLY-MIN-FIN are de�ned analogously to the above.

Note that there is also slightly di�erent version of nearly minimal learnability in

the literature, where nearly minimal refers to �within a recursive fundge factor h.�

That is, one requires the learner to �nitely converge to a correct program i such

that i ≤ h(minψ f , where f is the target function (cf., e.g., Chen [24], and the

references therein).

2.2. Nonconstructive Learning of Recursive Functions

The next model we shall consider in this paper derives its motivation from the

fact that R /∈ LIM, and thus R /∈ FIN and R /∈ MIN-FIN . Freivalds and Zeug-



6

mann [25] introduced a new measure to classify the di�culty of learning the class R
or to learn indexed families of recursive functions under additional constraints such

as �nite learning or �nite minimal learning. This new measure is the amount of

nonconstructivity needed to achieve the speci�ed learning goal.

The strategies used for nonconstructive inductive inference take as input not

only the encoded graph of a function f ∈ R but also a help-word w. The help-words

are assumed to be encoded in binary. So, for such strategies we write S(fm, w) to
denote the program output by S. Since there are in�nitely many functions to learn,

a parameterization is necessary. That is, we allow for every n a possibly di�erent

help-word w and we require the strategy to learn every recursive function contained

in {ψ0, . . . , ψn} with respect to the numbering ψ.

De�nition 2.5 (Freivalds and Zeugmann [25]) Let ψ ∈ P2, let U ⊆ R, and

let d ∈ R. A strategy S ∈ P2 �nitely infers U with nonconstructivity d(n) with

respect to ψ, if for each n ∈ N there is a help-word w of length at most d(n) such

that for every f ∈ U ∩ {ψ0, ψ1, . . . , ψn}

(1) S(fm, w) is de�ned for all m ∈ N, and
(2) the sequence (S(fm, w))m∈N �nitely converges to a program i satisfying ψi = f .

It follows from this de�nition that a help word w for every n that is larger than

the minimal ψ-program i of the target function f also produces a correct result j but

it is allowed that the produced result is di�erent from i. This is quite natural, since

there may be many distinct ψ-programs for f in the numbering ψ. In particular,

if ψ is a Gödel numbering then there are in�nitely many ψ-programs for f .

Nonconstructive �nite minimal inference and nonconstructive �nite nearly min-

imal identi�cation are de�ned in a way analogous to the above.

To simplify notation, we make the following convention. Whenever we talk about

nonconstructivity log n, we assume that the logarithmic function lg n to the base 2
is replaced by its integer valued counterpart. That is, we set log n =df blg nc + 1
and log 0 =df 1, where bxc denotes the �oor function.

As far as the present paper is concerned, the following results obtained in [25] are

relevant. Below we use succ to denote the successor function, i.e., succ(n) =df n+1
for all n ∈ N.

Theorem 1. Let ϕ ∈ Göd be arbitrarily �xed. Then there is a strategy S ∈ P2

such that the class R can be ϕ-minimal �nitely identi�ed with nonconstructivity

succ(n) with respect to ϕ.

Theorem 2. Let U be any indexed family, and let ψ ∈ R2 be any numbering for U .
Then there is a strategy S ∈ P2 such that the class U can be ψ-minimal �nitely

identi�ed with nonconstructivity 2 · log n with respect to ψ.

Theorem 3. There is an indexed family U and a numbering ψ ∈ R2 for it such

that no strategy S ∈ P2 can ψ-minimal �nitely identify the class U with noncon-

structivity c · log n with respect to ψ, where c ∈ (0, 1) is any constant.
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2.3. Finite Frequency Learning

The notion of frequency computation was introduced by G. Rose [5] as an attempt to

have an absolutely deterministic mechanism with properties similar to probabilistic

algorithms. The de�nition was as follows. Let N = {0, 1, 2, . . .} denote the set of

all natural numbers. A function f : N → N is said to be (m,n)-computable, where

1 ≤ m ≤ n, m,n ∈ N, i� there exists a recursive function R: Nn → Nn such that,

for all n-tuples (x1, · · · , xn) ∈ Nn of mutually distinct natural numbers,

|{i | (R(x1, · · · , xn))i = f(xi) , 1 ≤ i ≤ n}| ≥ m ,

where (R(x1, · · · , xn))i denotes the ith component of R(x1, · · · , xn).
McNaughton [26] cites in his survey a problem (posed by Myhill) whether f has

to be recursive if m is close to n. This problem was answered by Trakhtenbrot [27]

who showed the following.

Theorem 4. If a function f : N → N is (m,n)-computable, where 2m > n, then f

is recursive.

On the other hand, Trakhtenbrot [27] proved that, if 2m = n then nonrecursive func-

tions can be (m,n)-computed. Kinber [28, 29] extended the research by considering

frequency enumeration of sets, and this was further studied by Austinat et al. [30].

The class of (m,n)-computable sets equals the class of recursive sets if and only

if 2m > n. The notion of frequency computation can be extended to other models

of computation. Frequency computation in polynomial time was discussed in full

detail by Hinrichs and Wechsung [31]. Frequency computations became increasingly

popular when the relation between frequency computation and computation with a

small number of queries was discovered [32, 33, 34, 35].

So it is only natural to study �nite frequency learning, too. The corresponding

learning model was introduced by Kinber et al. [36] and called parallel learning. In

(m,n)-�nite frequency learning the strategy takes as input an n-tuple (fx1 , . . . , f
x
n )

of initial segments of pairwise di�erent target functions and outputs an n-tuple

(ix1 , . . . , i
x
n) of hypotheses. The notion of �nite convergence of sequences of numbers

directly carries over to n-tuples of numbers. Therefore, one requires the sequence of

n-tuples (ix1 , . . . , i
x
n)x∈N to converge �nitely. The learner is successful if at least m

functions have been learned �nitely.

However, in the present paper we shall deal only with �nite minimal frequency

learnability which is formally de�ned as follows.

De�nition 2.6. Let U ⊆ R, let ψ ∈ P2, and let m,n ∈ N+, where m ≤ n. The

class U is said to be �nitely ψ-minimal learnable with frequency (m,n) with respect

to ψ if there is a strategy S ∈ Pn that takes as input growing initial segments of

pairwise di�erent functions f1, . . . , fn ∈ U and outputs n-tuples of natural numbers

such that

(1) S(fx1 , . . . , f
x
n ) is de�ned for all x ∈ N,
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(2) the sequence (S(fx1 , . . . , f
x
n ))x∈N �nitely converges to an n-tuple (i1, . . . , in),

and

(3) |{j | 1 ≤ j ≤ n and ij = minψ fj}| ≥ m.

If U is �nitely ψ-minimal learnable with frequency (m,n) with respect to ψ by a

strategy S then we write U ∈ MIN-FIN
(m,n)
ψ (S). The learning types MIN-FIN

(m,n)
ψ

and MIN-FIN (m,n) are de�ned analogously to the above.

2.4. Probabilistic Learning of Recursive Functions

Finite identi�cation of classes of recursive functions by probabilistic strategies was

introduced by Freivalds [37] and has found considerable attention ever since (cf., e.g.,

[38, 39, 40] and the references therein).

Intuitively speaking, a probabilistic strategy is allowed to �ip a fair coin in each

step of its computation and then to branch its computation in dependence on the

outcome of its coin-�ip. So we can assume that a probabilistic strategy is realized by

a three tape Turing machine. On its �rst semi-in�nite and read-only tape the results

of its coin-�ips are written. Once such a sequence s is �xed the machine works as a

deterministic strategy with the additional information s. On the second semi-in�nite

and read-only tape all the values f(0), f(1), f(2), . . . of the target function f are

written. The third tape of the machine is write-only. The machine computes then

a sequence of natural numbers which is written on its third tape. If this sequence

converges �nitely to an index j such that ψj = f then we say that the machine was

successful. The probability that S �nitely learns f is then de�ned by the usual Borel

measure on the set of all in�nite 0-1-sequences s such that, on input s and f , the

strategy outputs a sequence that �nitely converges to a correct ψ-program for f .

De�nition 2.7. Let ψ ∈ P2 be any numbering. We say that a probabilistic strat-

egy S FIN-learns a function f with probability p with respect to ψ if with probability

no less than p there is a computation path such that the strategy S produces a cor-

rect result on f , i.e., a number j such that ψj = f , and

A probabilistic strategy S FIN-learns a class U ⊆ R with probability p with respect

to ψ if it FIN -learns every function f ∈ U with probability p with respect to ψ.

A class U ⊆ R is said to be FIN-learnable with probability p with respect to ψ

if there exists a strategy S ∈ P that FIN-learns U with probability p with respect

to ψ.

De�nition 2.7 can be directly generalized to probabilisticMIN-FIN -learning and

to probabilistic NEARLY-MIN-FIN-learning in the obvious way.

3. Results

After having de�ned various learning models we are in the position to investigate the

impact of the di�erent technological choices on the resulting learning paradigms.
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We start this section by establishing several trade-o�s between deterministic in-

ference, probabilistic identi�cation, frequency learning, and learning allowing for a

certain amount of nonconstructivity. In order to achieve good trade-o�s, we also

vary the learning goal to a certain extent. That is, we look just at �nite learning,

at �nite minimal inference, and at �nite nearly minimal identi�cation, while vary-

ing or not varying between deterministic learning methods, probabilistic inference

methods, nonconstructive learning methods, and frequency learning (cf. Theorem 5

and Theorem 6).

Theorem 5. There is a Gödel numbering ϕ ∈ P2 and an indexed family U of

recursive functions such that

(1) U ∈ FIN,

(2) U can be probabilistically MIN-FIN ϕ-identi�ed with probability 1
2 ,

(3) U can be probabilistically NEARLY-MIN-FINϕ-identi�ed with probability 2
3 ,

(4) U cannot be deterministically MIN-FIN ϕ-identi�ed,

(5) U cannot beMIN-FIN (m,n)
ϕ -identi�ed for all m,n ∈ N, m ≤ n, provided m

n > 1
2 ,

(6) U cannot be deterministically MIN-FIN ϕ-identi�ed with nonconstructiv-

ity o(log n).

Proof. Our proof consists of four parts. First, we construct an indexed family V of

recursive functions such that V cannot be MIN-FIN ϕ-inferred with nonconstructiv-

ity o(log n). Second, we de�ne a subfamily V ′ of V consisting of constant functions

only. Third, we construct a Gödel numbering ϕ and a new indexed family of con-

stants U being a subfamily of V ′ with all the needed properties. Fourth, we prove

the existence of the needed probabilistic strategies.

Part I. We consider a speci�c bijection c: N × N → N which can be traced

back to Pepis [41] and Kalmár [42], i.e., c(u, v) = (2u − 1) + 2u+1v. In this way,

if w = c(u, v) for any arbitrarily �xed u, then the value of w corresponding to (u, v)
is linear in v.

The class V is de�ned by constructing a numbering τ ∈ R2 and then de�ning

the class V to be V = Rτ . Let k ∈ N be arbitrarily �xed and let u, v ∈ N be the

uniquely determined numbers such that k = c(u, v).
First, we de�ne the values τ3k(0) = τ3k+1(0) = τ3k+2(0) = k. Hence, for any

arbitrarily �xed k, the minimal τ -program of any function f with a value f(0) = k

can be only 3k, 3k + 1 or 3k + 2.
Furthermore, we interpret every function in P2 as a strategy and obtain thus

an e�ective enumeration S0, S1, S2, . . . of all possible strategies. We proceed induc-

tively. Below, for ` ∈ N, we use the shortcut k`+1 to denote the encoding of f ` of

the initial segment of any function f for which f(z) = k for z = 0, . . . , `.
In order to de�ne τ3k(n), τ3k+1(n), τ3k+2(n) for n > 1 we dovetail the following

computations. We successively de�ne the function values

τ3k(n− 1) = τ3k+1(n− 1) = τ3k+2(n− 1) = k
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for n = 2, 3 . . ., until we �nd the least n such that the following Conditions (A)

and (B) are satis�ed.

(A) There is an ` < n such that each of the values Su(k, v), . . . , Su(k`+1, v) turns

out to be computable in at most n steps of computation.

(B) Su(k, v) 6= Su(k2, v) 6= · · · 6= Su(k`, v) = Su(k`+1, v).

If Conditions (A) and (B) never turn out to be satis�ed then the function values

τ3k(n), τ3k+1(n), τ3k+2(n) are de�ned for all n ∈ N, and thus τ3k, τ3k+1, τ3k+2 ∈ R.

On the other hand, if Conditions (A) and (B) turn out to be satis�ed then

Condition (B) indicates the sequence Su(k, v), . . . , Su(k`+1, v) may have converged

�nitely. That is, it either has converged �nitely or it cannot converge �nitely at all.

Assuming that Conditions (A) and (B) turn out to be satis�ed, we continue

to de�ne the functions τ3k, τ3k+1, τ3k+2 as follows. We de�ne z(k) = Su(k`, v). If
z(k) ∈ {3k, 3k+ 1, 3k+ 2} then we de�ne τz(k)(x) = k+ 1 for all x ≥ n and for the

remaining m ∈ {3k, 3k + 1, 3k + 2} \ {z(k)} we set τm(x) = k for all x ≥ n. Thus,

by construction we have τ ∈ R2 and so V = Rτ is an indexed family.

Now suppose that Su is an arbitrary strategy that �nitely τ -minimal learns V

with a certain amount of nonconstructivity. We wish to estimate the amount of

nonconstructivity needed to achieve this.

To do this, we wish to estimate a number q such that s bits of nonconstructivity

do not su�ce for Su to learn all functions in {τ0, τ1, . . . , τq} in the desired sense. Let

t = 2s − 1 be the largest natural number in binary notation which does not exceed

s bits. Consider the values k0 = c(u, 0), k1 = c(u, 1), k2 = c(u, 2), . . . kt = c(u, t). By
the choice of the bijection c we know that kt = c(u, t) equals (2u − 1) + 2u+1t and

thus kt does not exceed 2u+2t.

For each i ∈ {0, 1, . . . , t} either z(ki) is de�ned or it is not de�ned. If z(ki) is

de�ned then Su does not learn τz(ki) �nitely with respect to τ . If z(ki) is not de�ned
then Su does not learn �nitely any of the functions τ3ki , τ3ki+1, τ3ki+2. Hence there

always is a function in {τ0, τ1, . . . , τ3kt+2} ⊆ {τ0, τ1, . . . , τ3·2u+2kt+2} which is not

learnable by the strategy Su with at most s bits of nonconstructivity.

So, if q ≥ 3·2u+2kt+2 = const·t = const·2s then the additional help information

fails to produce a correct result by the strategy Su for at least one function in

{τ0, τ1, . . . , τq}. It follows that Su needs at least log q bits of nonconstructivity to

learn all the functions in {τ0, τ1, . . . , τq}.

Part II. We de�ne the class V ′ ⊆ V to be the subclass of V that consists of all

the constant functions in V . This family is FIN-learnable because the family of all

the constant functions is FIN-learnable with respect to any Gödel numbering ϕ.

Part III. We construct a Gödel numbering ϕ using some standard Gödel num-

bering ψ of P, e.g., the numbering using all possible Turing machines and our

indexed family V = {τn | n ∈ N} of recursive functions. For all n ∈ N and
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all i ∈ {0, 1, . . . , 14} we de�ne

ϕ15n+i =df

{
ψ3n+i, if i = 0, 1, 2 ;
τ12n+i−3, if i ∈ {3, . . . , 14} .

The family U consists of those constants from the family V ′ whose minimal

program in the numbering ϕ is de�ned to equal some τj but not de�ned to equal

some ψk (i.e., we demand the minimal program in the numbering ϕ to be congru-

ent to 3, 4, . . . , 14 modulo 15). Notice that the family U is non-empty because, for

arbitrary n, among the ϕ-programs 15n, 15n + 1, . . . , 15n + 14 there are at least 4

distinct programs for constant functions but only 3 programs for functions de�ned

as ϕ15n = ψ3n, ϕ15n+1 = ψ3n+1, ϕ15n+2 = ψ3n+2.

Part IV. For all functions in U the minimal program in the numbering ϕ is to

be congruent to 3, 4, . . . , 14 modulo 15 but the construction of V ensures that no

strategy with an amount of nonconstructivity o(log n) can produce this result.

The probabilistic strategy producing minimal ϕ-programs for the functions in U
reads the value f(0) = k of the target function. Then it computes d =df 3k mod 12
and n =df bk/4c and outputs 15n+ 3 + d with probability 1/2, and 15n+ 3 + d+ 1
with probability 1/2. For every function in U one of these results is the correct

minimal ϕ-program.

The probabilistic strategy producing nearly minimal ϕ-programs for the func-

tions in U reads the value f(0) = k of the target function, computes d =df 3k mod 12
and n =df bk/4c and outputs 15n + 3 + d, 15n + 3 + d + 1, and 15n + 3 + d + 2
each with probability 1/3. For every function in U at least two of these results are

correct ϕ-programs and all of them are nearly minimal.

It remains to show Assertion (4). Recall that all functions in U are constant. If

we know that the target function is constant, we have all the information about this

function merely from f(0). MIN-FIN ϕ-identi�cation of a constant function allows

only one possible correct result for any target function. Hence this learning can be

described by a function g(n) transforming n = f(0) into the minimum index of f

in the numbering ϕ. Suppose to the contrary that U is MIN-FIN (m,n)
ϕ -identi�ed

with m
n > 1

2 . Then by Theorem 4, the function g is recursive. However, we have

already proved in Assertion (3) that U cannot be deterministically MIN-FIN ϕ-

identi�ed. So, we have a contradiction, and thus our supposition must be false.

Assertion (4) is shown.

Theorem 6. There is a Gödel numbering ϕ and a family U of recursive functions

such that

(1) U cannot be probabilistically MIN-FIN ϕ-identi�ed with a probability exceed-

ing 1
2 ,

(2) U can be MIN-FIN (n−1,n)
ϕ -identi�ed for every n ∈ N+,

(3) U cannot be deterministically MIN-FIN ϕ-identi�ed.
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Proof. Let ϕ′ ∈ P2 be any arbitrarily �xed Gödel numbering of P. Without loss

of generality we can assume that ϕ′0 is the nowhere de�ned function.

We interprete every ϕ′i, i ∈ N, as a probabilistic strategy and thus obtain an

e�ective enumeration (Si)i∈N of all probabilistic strategies. Note that S0 is then the

nowhere de�ned probabilistic strategy. Therefore, S0 does not MIN-FIN -identify

any class of recursive functions. Now, our goal is to construct gradually a class U by

eliminating all strategies Si as the strategy which could MIN-FIN -identify U with

a probability exceeding 1
2 . The class U will be de�ned non-algorithmically but the

functions in U will be recursive. In order to do so, we start with the de�nition of

the desired Gödel numbering ϕ. We set ϕ0 = ϕ′0 and

ϕ(2v)! = ϕ′v for all v ∈ N . (1)

So, we have already de�ned ϕ0, ϕ1, ϕ2, ϕ24, ϕ720, . . ., and it remains to de�ne the

all the functions ϕu, where u is not of the form (2v)! for some v ∈ N. In order to

do so we consider the remaining indices of functions in the numbering ϕ divided in

fragments

H(v) = [(2v)! + 1, (2(v + 1))!− 1 for all v ∈ N+ . (2)

For example, we have H(1) = [3, 23] and H(2) = [25, 719]. When all these functions

in the numbering ϕ are de�ned then the de�nition given in (1) ensures that the

numbering ϕ is a Gödel numbering of P. The de�nition of the desired class U and

of the remaining functions in the numbering ϕ is done simultaneously.

The functions f ∈ U may have only one value x such that f(x) = 0. This value
of x separates the head and the tail of the function f . Each function f ∈ U is

constructed to eliminate some strategy Si.

The head of any function f ∈ U is such that the values f(0), f(1), · · · , f(x− 1)
contain full information about the minimum ϕ-programs of all functions f ∈ U
included to eliminate the strategies S0, S1, S2, . . . , Si−1 but not about the function

included to eliminate the strategy Si. All the values f(0), f(1), · · · , f(x − 1) equal

or exceed 1. All the values f(x + 1), f(x + 2), · · · in the tail of the function f ∈ U
exceed 1.

The construction of ϕ is divided in time-steps t = 1, 2, 3, . . .. In each of these

time-steps we deal with one fragment H(v) during a �nite number of steps of com-

putation. During this time-step we try to eliminate the strategy Sv.

By G(v, t) we denote a current conjecture G(v, t) ⊆ H(v) which functions f from

the fragment H(v) are likely to enter the class U . For any v ∈ N+ and t1, t2 ∈ N+

we have

(t2 > t1) implies G(v, t2) ⊆ G(v, t1) .

A current conjecture G(v, t) may be changed during the subsequent time-steps,

but only a �nite number of times.
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We consider these fragments H(v) during t steps of computation in the following

order:

(v = 1, t = 1)

(v = 1, t = 2), (v = 2, t = 3)

(v = 1, t = 4), (v = 2, t = 5), (v = 3, t = 6)

. . .

Hence we return to every fragmentH(v) in�nitely many times. When considering

the fragment H(v) during t steps of computation we distinguish whether or not the

fragment has been considered earlier. If not, then we take the current conjectures

G(1, t), G(2, t), . . . , G(v − 1, t)

which functions from preceding fragments are likely to enter U . We start v + 1
distinct new functions in this fragment. We de�ne every such new function ϕu con-

taining in its head ϕu(0), ϕu(1), ϕu(t−1) all the information about all the functions

in the fragments

H(1), . . . ,H(v − 1) (3)

that have not yet been in construction. (There would be no di�culty to incorporate

all this information into ϕu(0) alone.) We add the value ϕu(t) = 0.
We start constructing the tails of these v + 1 functions by using distinct

constants c > 0. Since only v functions ϕ2!, ϕ4!, . . . , ϕ(2v)! precede the fragment

H(v) = [(2v)! + 1, (2(v + 1))!− 1], at least one of these new functions is not among

ϕ2!, ϕ4!, . . . , ϕ(2v)!.

If yes then for every function ϕu in this fragment whose construction is not yet

stopped, we perform the strategy Sv on this function during t steps of computation.

(By saying �we perform the strategy Sv on this function� we mean that if the

strategy asks for values of the target function already de�ned, we give the correct

value. However, if the strategy asks for values of the target function not yet de�ned,

we use values c for the tail of the function and we add values ϕu(y) = c to the

de�nition of this function for all y ≥ t.) Since Sv is a probabilistic strategy, we

compute all possible computation paths during t steps of computation and obtain

the probabilities of all possible results.

We de�ne G(v, t + 1) consisting of all these v + 1 newly added functions ϕu.

Additionally we de�ne G(a, t+1) = G(a, t) for all nonempty G(a, t) de�ned earlier.

If Sv has produced the result u with a probability exceeding 1
2 then we stop the

construction of ϕu leaving in�nitely many values not de�ned. We remove u from

G(v, t+ 1). Simultaneously, we start a new function ϕw in the same fragment H(v)
using the same values where ϕu was de�ned and giving this function a di�erent ϕ-

index w ∈ H(v) taking a constant c not used in earlier stages of our construction and
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de�ning ϕw(y) = c for all y ≥ t. In this way, the strategy Sv has produced a wrong

result u with a probability exceeding 1
2 for this function. We add the function ϕw

to the class U and remove all remaining numbers but w from G(v, t+ 1).
If Sv has produced the result di�erent from u with a probability exceeding 1

2

then we de�ne ϕu(y) = ϕt for all y ≥ t, add the function ϕu to the class U and

remove all remaining numbers but u from G(v, t+1). The strategy Sv has produced
a wrong result with a probability exceeding 1

2 for this function.

In all three cases we end the consideration of the fragment H(v) during t steps
of computation by going to the next time-step.

If a strategy Sv fails to MIN-FIN -identify some function from the class U by

producing a wrong result then we see this after a �nite number of time-steps. How-

ever, it is possible that for some v the strategy Sv never produces any result with

a probability exceeding 1
2 for a function in H(v). Then our construction returns

to the fragment H(v) in�nitely many times and several functions in this fragment

become total. In this case we non-algorithmically choose one of these total functions

to enter the class U . The strategy Sv fails on this function because it produces no

result. Hence, Assertion (1) is shown.

Clearly, Assertion (1) directly implies Assertion (3).

Assertion (2) is implied by the sentence containing the speci�cation (3) of the

fragments to be considered when starting the de�nition of ϕu in our proof. Since

the indices of the strategies S0, S1, S2, . . . , Si are well-ordered, and all the target

functions in the n-tuple are in the class U , one of the target functions contains this
information for all the other functions but not for itself. Hence we can output the

correct minimal programs for all the other functions but not for this one. This gives

us the frequency (n− 1, n).

4. Conclusions and Open Problems

In the present paper we considered four di�erent models of �nite learning of classes of

recursive functions, i.e., deterministic �nite learning algorithms, probabilistic �nite

learning strategies, inference algorithms that learn �nitely with a certain frequency,

and �nite learners that are allowed to use a certain amount of nonconstructive

information during the learning process. The resulting learning models have been

compared to one another, and several trade-o� have been shown. Basically, the re-

sults obtained showed that probabilistic learners, frequency inference algorithms,

and �nite learners using a certain amount of nonconstructivity all extend the learn-

ing power of deterministic �nite learning, but in di�erent directions.

It remained open to characterize these learning models in terms of computable

numberings and/or complexity theoretic properties. Such characterizations have

been undertaken for various learning models and turned out to be extremely useful

for a deeper understanding of what properties allow a class of recursive functions

to be learnable in one model or another (cf. Zeugmann and Zilles [18] and the

references therein for more information).
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It would also be desirable to extend �nite learning to quantum �nite learning and

to investigate the problem whether or not �nite learning quantum strategies again

extend deterministic �nite learning in a direction di�erent from the ones considered

in this paper.

Furthermore, recently Freivalds [43] and his students have introduced ultramet-

ric algorithms using p-adic numbers instead of real numbers to describe transition

�probabilities.� This model has been developed further in [44] to �nite query learn-

ing. That is, instead of receiving the graph of a target function as input, the learner

is allowed to ask value queries, where the input is any argument x and the teacher

has then to return f(x). It has been shown that ultrametric algorithms have advan-

tages even over nondeterministic algorithms for certain learning problems in this

�nite query learning setting. So, it would be interesting to know whether or not

similar results could be obtained in the setting considered in this paper.
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