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Abstract. The present paper deals with the co-learnability of enumerable
families £ of uniformly recursive languages from positive data. This refers to
the following scenario. A family L of target languages as well as hypothesis
space for it are specified. The co-learner is fed eventually all positive examples
of an unknown target language L chosen from L. The target language L
is successfully co-learned iff the co-learner can definitely delete all but one
possible hypotheses, and the remaining one has to correctly describe L.
The capabilities of co-learning are investigated in dependence on the choice
of the hypothesis space, and compared to language learning in the limit,
conservative learning and finite learning from positive data. Class preserving
learning (£ has to be co-learned with respect to some suitably chosen enu-
meration of all and only the languages from L), class comprising learning
(£ has to be co-learned with respect to some hypothesis space containing
at least all the languages from L), and absolute co-learning (£ has to be
co-learned with respect to all class preserving hypothesis spaces for L) are
distinguished.

Our results are manyfold. First, it is shown that co-learning is exactly as pow-
erful as learning in the limit provided the hypothesis space is appropriately
chosen. However, while learning in the limit is insensitive to the particular
choice of the hypothesis space, the power of co-learning crucially depends
on it. Therefore the properties a hypothesis space should have in order to
be suitable for co-learning are studied. Finally, a sufficient conditions for
absolute co-learnability is derived, and it is separated from finite learning.

1. Introduction

The present paper deals with the co-learnability of enumerable families of uni-
formly recursive languages from positive data. This refers to the following scenario
introduced by Freivalds et al. [3] and further studied in [4] for the setting of in-
ductive inference of recursive functions. A family £ of target languages as well as
hypothesis space for it are specified. The co-learner is fed eventually all positive
examples of an unknown target language L chosen from L. The target language L
is successfully co-learned if and only if the co-learner can definitely delete all but
one possible hypotheses, and the remaining one has to correctly describe L. This
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approach derives its motivation from machine learning, where learning algorithms
rather often start from a large finite set of possible guesses. Then all but one are re-
futed during learning. Thus, our model is the recursion theoretic counterpart of that
approach. Kummer [8] used this approach for showing that an r.e. class of recursive
functions is co-learnable with respect to all of its numberings iff all these numberings
are equivalent; thus providing a learning theoretic solution to a longstanding open
problem in numbering theory. Recently, Lange et al. [10] generalized the scenario
described above to learning by erasing.

We investigate the capabilities of co-learning from positive data in dependence
on the choice of the hypothesis space, and compare it to learning in the limit, conser-
vative learning, and finite learning from positive data. We distinguish between class
preserving learning (£ has to be co-learned with respect to some suitably chosen
enumeration of all and only the languages from £), class comprising learning (£ has
to be co-learned with respect to some hypothesis space containing at least all the
languages from £), and absolute co-learning (£ has to be co-learned with respect to
all class preserving hypothesis spaces for £).

Our results are manyfold. First, it is shown that co-learning is exactly as pow-
erful as learning in the limit provided the hypothesis space is appropriately chosen.
However, while learning in the limit is insensitive to the particular choice of the
hypothesis space, the power of co-learning crucially depends on it. The latter result
is obtained while studying the co-learnability of the pattern languages. Moreover,
proving that the pattern languages are not absolutely co-learnable but absolute con-
servatively inferable allows some deeper insight into the strength to refute some and
all but one hypothesis.

Furthermore, we study properties a hypothesis space should have in order to
be suitable for co-learning. Finally, we derive sufficient conditions for absolute co-
learnability, and separate it from finite learning.

2. Notations and Definitions

Unspecified notations follow Rogers [15]. Let IN = {0,1,2,...} be the set of
natural numbers. We set Nt = IN\ {0}. By (-,):IN x IN — IN we denote Cantor’s
pairing function. We use P™ and R"” to denote the set of all n-ary partial recursive
and total recursive functions over IN, respectively. The class of all {0,1} valued
functions f € R" is denoted by Rf ;. For n = 1 we omit the upper index.

Every function ¢ € P? is called a numbering. Moreover, let ¢y € P2, then we
write 1; instead of Azt (j, ). Furthermore, let 1/ € R, then by L(1);) we denote
the language generated or described by #;, i.e., L(¢;) = {z| ¢;(z) = 1, z € IN}.
Moreover, we call £ = (L(#;));jew an indezed family (cf. Angluin [2]). For the sake
of presentation, we restrict ourselves to consider exclusively indexed families of non-
empty languages. Let £ be an indexed family. Every numbering ¢ € R%,l is called
hypothesis space. A hypothesis space 1) € R2, is said to be class comprising
for an indexed family £ iff range(L) C {L(%),l Jj € IN}. Furthermore, we call a
hypothesis space ¥ € 7?,871 class preserving for L iff range(L) = {L(3;)| j € IN}.

Let L be a language and let ¢ = sq, s1, 89, ... be an infinite sequence of natural



numbers such that range(t) = {sz |k € IN} = L. Then ¢ is said to be a tezt for
L or, synonymously, a positive presentation. By text(L) we denote the set of all
positive presentations of L. Moreover, let ¢ be a text, and let y be a number. Then
t, denotes the initial segment of ¢ of length y + 1, ie., t, = sq,...,s,. Finally, t;“
denotes the content of t,, i.e., t;f ={s,| 2 <y}.

As in Gold [6], we define an inductive inference machine (abbr. IIM) to be
an algorithmic device working as follows: The IIM takes as its input incrementally
increasing initial segments of a text ¢ and it either requests the next input, or it first
outputs a hypothesis, i.e., a number, and then it requests the next input.

We interpret the hypotheses output by an ITM with respect to some suitably
chosen hypothesis space 9 € 7'\’,3,1. When an IIM outputs a number j, we interpret
it to mean that the machine is hypothesizing the language L(1);).

Furthermore, we define a co-learning machine (abbr. CLM) to be an algo-
rithmic device working exactly as an IIM. However, there is a major difference in
the semantics of the output of an IIM and CLM, respectively. Let ¢ € 7?,371 be
any hypothesis space. Suppose a CLM M has been successively fed an initial seg-
ment ¢, of a text £, and it has output numbers jo,...,j;, 2 < y. Then we interpret
J =min(IN\{jo,...,j.}) as M’s actual guess. Intuitively speaking, if a CLM outputs
a number j, then it definitely deletes j from its list of potential hypotheses.

Let M be an ITM or a CLM, let ¢ be a text, and y € IN. Then we use M(%,) to de-
note the last number that has been output by M when successively fed ¢,. We define
convergence of ITMs as usual. Let ¢ be a text, and let M be an IIM. The sequence
(M(ty))yew is said to converge to the number j if and only if either (M (¢y))yew
is infinite and all but finitely many terms of it are equal to j, or (M(¢y))yem Is
non-empty and finite, and its last term is j.

A CLM M is said to stabilize on a text ¢ to a number j if and only if {j} =
IN\ {M(t,)]| y € IN}. Intuitively, a CLM M stabilizes itself on a number j if it
outputs all but the natural number j when successively fed a text. Now we are
ready to define learning and co-learning.

Definition 1. (Gold [6]) Let £ be an indezxed family, let L be a language, and let
Y E 7'\’,%71 be a hypothesis space. An IIM M CLIM—infers L from text w.r.t.
iff for allt € text(L), there exists a j € IN such that the sequence (M(ty))yem
converges to j and L = L(1);).

Furthermore, M CLIM —infers £ w.r.t. ¢ iff, for each L € range(L), M CLIM -
nfers L w.r.t. .

Finally, CLIM denotes the set of all indexzed families L for which there are an
IIM M and a hypothesis space 1 such that M CLIM —infers £ w.r.t. 1.

By the definition of convergence, only finitely many data of L were seen by the
IIM upto the (unknown) point of convergence, whenever it infers L. Hence, some
form of learning must have taken place. Thus, the terms infer, learn, and identify
are used interchangeably.

In Definition 1, LIM stands for “limit.” The prefix C' is used to indicate class
comprising learning, i.e., the fact that £ may be learned with respect to some
class comprising hypothesis space 1 for L. Restricting CLIM to class preserving



hypothesis spaces results in c¢lass preserving inference and is denoted by LIM.
Finally, we use the prefix A to express the fact that an indexed family £ has to be
inferred with respect to all class preserving hypothesis spaces for £, and we refer
to this learning model as to absolute learning. We adopt this convention in the
definitions of the learning types below.

The following proposition clarifies the relations between absolute, class preserving
and class comprising learning in the limit (cf. Lange and Zeugmann [13]).

Proposition 1. ALIM = LIM = CLIM

Note that, in general, it is not decidable whether or not an IIM M has already
converged on a text ¢ for the target language L. Therefore, we also consider a special
case where it has to be decidable whether an ITM has finished the learning task.

Definition 2. (Gold [6]) Let £ be an indezxed family, let L be a language, and let
v € R2, be a hypothesis space. An ITM M CFIN—infers L from text w.r.t.
iff for all t € tezt(L), there exists a j € IN such that M, when successively fed t,
outputs the single hypothesis j, L = L(1;), and stops thereafter.

Furthermore, M CFIN —infers L w.r.t. ¢ iff, for each L € range(L), M CFIN -
infers L w.r.t. 1. The resulting learning type is denoted by CFIN .

The next proposition states that, if an indexed family £ can be CFIN-learned
with respect to some hypothesis space 1 for it, then it can be finitely inferred with
respect to every class preserving hypothesis space for £ (cf. Zeugmann et al. [20]).

Proposition 2. AFIN = FIN = CFIN

Next we adapt the definition of co-learnability introduced by Freivalds et al. [3]
to language learning from positive data.

Definition 3. Let £ be an indezed family, let L be a language, and let o) € R%yl
be a hypothesis space. A CLM M co-CFIN—infers L from text w.r.t. ¢ iff for
allt € text(L), there exists a j € IN such that M on t stabilizes to j and L = L(1);).

M co-CFIN —infers L w.r.t. 3 iff, for each L € range(L), M co-CFIN —infers L
w.r.t. .

By co-CFIN we denote the set of all indezed families L for which there are a
CLM M and a hypothesis space 1 such that M co-CFIN —infers L w.r.t. ).

Furthermore, we define conservative IIMs. Intuitively speaking, conservative
ITMs maintain their actual hypothesis at least as long as the have received data that
“provably misclassify” it. Hence, this learning model formalizes a different approach
of Popper’s refutation principle than our model of co-learning does.

Definition 4. (Angluin [2]) Let £ be an indezed family, let L be a language,

and let Y € R%,l be a hypothesis space. An IIM M CCONSV—infers L from
text w.r.t. ¥ iff

(1) M CLIM —infers L w.r.t. 1,

(2) for all texts t € text(L) and for all y,k € IN, if M(ty) # M(ty4x) then ty+_|_lc Z
L¥m,)):
Finally, M CCONSV —infers £ w.r.t. ¢ iff, for each L € range(L), M CCONSV -

infers L w.r.t. i. The resulting collection of sets CCONSV 1s analogously defined as
above.



The following proposition shows that conservative learning is sensitive to the
particular choice of the hypothesis space (cf. Lange and Zeugmann [12]).

Proposition 3. ACONSV C CONSV C CCONSV C ALIM

3. Results

As already mentioned in the Introduction, Freivalds et al. [3] studied co-learnabi-
lity of recursive functions. However, in inductive inference functions and languages
are usually very different from one another (cf., e.g., [14]). Hence, it is only natural
to ask whether or not there are major differences between the co-learnability of
recursive functions and recursive languages, too. In this section we provide both
similarities and distinctions. The overall goal is far-reaching, and results presented
in the following subsection will guide us to central questions concerning the co-
inferability of recursive languages. Due to lack of space, several proofs are omitted
here. The reader is referred to [5] for the remaining ones.

3.1. Basic Results

We start our investigations by clarifying whether or not the capabilities of co-
learning do depend on the class of admissible hypothesis spaces. Clearly, co-AFIN C
co-FIN C co-CFIN. We ask whether or not these inclusions are proper, and what
are the lower and upper bounds of this hierarchy. The answer is provided by Theorem
1 and 2.

Theorem 1. Let L be an indexed family. Then £ € FIN implies L € co-AFIN.

Proof. Let ¢ € ngl be any class preserving hypothesis space for £. By Propo-
sition 2 there exists an IIM M that finitely infers £ with respect to ). The desired
CLM M can be defined as follows. Let L € range(£), t € text(L), and y € IN. The
CLM M simulates M on input ¢,. Now, two cases are possible. First, M outputs
nothing and request the next input. In this case M also requests the next input
and does not output any hypothesis. Second, M outputs a hypothesis j and stops.
Due to the definition of FIN we know that L = L(1);). Then M outputs, one at
a time, all natural numbers but j. Clearly, M stabilizes on J, and hence it indeed
co-AFIN —infers L. q.e.d.

Next we deal with the desired upper bound.

Theorem 2. Let £ be an indezed family, and let ) € ngl be any class comprising
hypothesis space for L. Then, £ € co-CFIN w.r.t. oy implies L € CLIM w.r.t. 1.

Proof. Let M be a CLM that witnesses £ € co-CFIN with respect to ). The
desired TIM M is defined as follows. Let L € range(L), t € text(L), and y € IN.
M simulates M on input ty. If M does not produce an output, then M requests
the next input and outputs nothing. Otherwise, it outputs the least number not yet
definitely deleted by M and requests the next input. Now it is easy to see that M
CLIM-learns L. q.e.d.

As the latter theorem shows, co-learning is at most as powerful as learning in
the limit. With the next theorem we establish the equality of CLIM and co-CFIN.



Theorem 3. Let L be an indexed family. If L € CLIM then there exists a class
preserving hypothesis space T € ’R,g}l such that L € co-FIN w.r.t. T.

Proof. Let L be an indexed family such that £ € CLIM . By Proposition 1 we may
assume, without loss of generality, that there are a class preserving hypothesis space
Y E ngl for £ and an IIM M such that M LIM—identifies £ with respect to . We
define the desired class preserving hypothesis space 7 as follows. For all j, z, z € IN
we set 7(; (2) = ¥;(2). Hence, the hypothesis space 7 contains for every language
L € range(L) infinitely many descriptions. Moreover, given any description (j, z)
one can easily compute infinitely many descriptions generating the same language
L(T<j7z)). Applying the same technique as in Freivalds, Karpinski and Smith [3] one

directly obtains a CLM M that co-FIN-infers £ with respect to 7. q.e.d.

Theorem 2 and 3 as well as Proposition 1 directly allow the following corollary.
Corollary 4. (1) ALIM = co-CFIN,
(2) co-FIN = co-CFIN.

The latter corollary yields some insight into the potential capabilities of co-
learning. In particular, we already know that every LIM—inferable indexed family is
also co-learnable provided the hypothesis space i1s appropriately chosen. Hence, in
order to decide whether or not a particular indexed family can be co-learned one can
apply any of the known criteria for LIM —inferability (cf., e.g., [2, 16, 20]). On the
other hand, if an indexed family £ is CLIM —identifiable at all then it can be learned
in the limit with respect to any class comprising hypothesis space for £ (cf. Propo-
sition 1). Therefore, it is natural to ask whether or not the power of co-learnability
does depend on the choice of the possible hypothesis spaces. We answer this ques-
tion by clarifying the relations between absolute and class preserving co-learning.
We achieve this goal by studying the co-learnability of the pattern languages in-
troduced by Angluin [1]. The polynomial time learnability of pattern languages has
been intensively studied, too (cf., e.g., [7, 9, 17, 18, 19]). So let us define what are a
pattern and a pattern language. Let X = {a,b, ...} be any non—empty finite alphabet
containing at least two elements. Furthermore, let X = {z;| i € IN} be an infinite
set of variables such that X N X = (). Patterns are non-empty strings over X U X,
e.g., ab, axgcce, brorgcxzizy are patterns. L(p), the language generated by pattern
p is the set of strings which can be obtained by substituting non—null strings from
37* for the variables of the pattern p. Thus aabbb is generable from pattern azgzb,
while aabba is not. Pat and PAT denote the set of all patterns and of all pattern
languages over X, respectively. From a practical point of view it is highly desirable
to choose the hypothesis space as small as possible. For that purpose we use the
canonical form of patterns (cf. [1]). A pattern p is in canonical form provided that
if k 1s the number of variables in p, then the variables occurring in p are precisely
Zg,...,Zp—1. Moreover, for every j with 0 < j < k — 1, the leftmost occurrence of
z; in p is left to the leftmost occurrence of z;4;1 in p. If a pattern p is in canonical
form then we refer to p as to a canonical pattern. Let Patc denote the set of all
canonical patterns. Clearly, for every pattern p there exists a unique ¢ € Patc such
that L(p) = L(g). Finally, choose any repetition free effective enumeration pq, p1, . . .
of Patc and define PAT = (L(p;))jem. Since membership for pattern languages is
uniformly decidable, there is a ) € 'R%yl such that L(p;) = L(t;) for all j € IN.



By Angluin [2] we also know that PAT € CONSV with respect to 1. This nicely
contrasts our next theorem.

Theorem 5. Let PAT and ) be defined as above. Then, PAT ¢ co-FIN w.r.t. 1.

Proof. Suppose the converse, i.e., there is a CLM M that co-FIN-learns PAT
with respect to ¢. Now, let k be the index of L(z1) in the hypothesis space 1,
i.e., L(z1) = L(¥%). We proceed in showing that there is a text ¢ € text(L(1z))
from which M fails to co-FIN—identify L(z1). For that purpose let p € Patc be
any pattern with L(p) # L(z1), and let ¢ € text(L(p)). Since M co-FIN—-infers L(p),
there exists a y such that k = M(t,), since otherwise M cannot stabilize on a correct
hypothesis for L(p). But now we observe that #, is an initial segment of some text
t € text(L(3y)) = text(L(z1)), since L(z;) = X+. Therefore, (M(%,)),cn cannot
stabilize to k, a contradiction. q.e.d.

The latter theorem directly implies the wanted separation of absolute and class
preserving co-learnability.

Corollary 6. co-AFIN C co-FIN

Additionally, Theorem 5 provides a main ingredient to show that absolute con-
servative learning does not imply absolute co-inferability.

Corollary 7. (1) ACONSV \ co-AFIN # 0,
(2) AFIN C ACONSV.

Proof. First, we prove Assertion (1). By Theorem 5 it suffices to show that PAT €
ACONSV. Let M and 1t be chosen as in the proof of Theorem 5, i.e., M witnesses
PAT € CONSV with respect to ¥». Now, let 7 be any class preserving hypothesis
space for PAT. We have to show that there exists an ITM M conservatively inferring
PAT with respect to 7. The main ingredient to the definition of A/ is the fact
that PAT can be finitely inferred from positive and negative data with respect to
(cf. Lange and Zeugmann [11]). Therefore, we can define M as follows. Let L € PAT,
let ¢ € tezt(L) and let y € IN.

Ajf(ty) = “Compute M(t,). If M when successively fed ¢, does not produce any
hypothesis, then output nothing and request the next input.
Otherwise, let j = M(t,). Compute 1/;(0),...,%;(z) and search for the least
index k such that 7 (z) = ;(z) for all # < z, where z is the least number such
that all shortest strings in L(1);) are classified. Output k& and request the next
input.”

Remember that 1) and 7 are class preserving hypothesis spaces for PAT. Hence, if
j = M(ty) then L(1);) is a pattern language. As shown in [11], if all shortest strings
in L(v;) are classified, then L(1;) = L(7y) provided m(z) = 9;(x) for all z < 2.
Therefore, M is conservative and it learns PAT with respect to 7. Consequently,

PAT € ACONSV, and (1) is proved.
Now, Assertion (2) is an direct consequence of PAT ¢ FIN (cf. [11]). q-e.d.

Furthermore, as we have seen, one-to-one hypothesis spaces ¢» do not guaran-
tee the co-inferability of the corresponding indexed families (L(1);));jem. This nicely
contrasts a result for the co-learnability of recursive functions (cf. Freivalds et al. [3],



Theorem 3). Moreover, the proof technique applied in the demonstration of Theo-
rem 5 allows the following generalizations.

Theorem 8. Let £ = (Lj)jew be any indezed family such that L = UjeINLj €
range(L). Furthermore, let 1) € 'ngl be any hypothesis space for L with card({k|
k€N, L(y) = L}) < oco. Then, L cannot be co-CFIN ~learned w.r.t. 1.

Theorem 9. Let £ = (Lj)jew be any indexzed family containing at least two
languages Ly, L, such that L, C L,. Then, for any hypothesis space ¢ € 7'\’,(2)71
satisfying card({m| L(¢m) = L.}) < oo we have £ ¢ co-CFIN w.r.i. 1.

As we have seen, the power of co-learnability may heavily depend on the par-
ticular choice of the hypothesis space. However, Theorems 8 and 9 might suggest
that inclusion of some languages in the target indexed family causes the sensitivity
of co-learning with respect to the choice of the hypothesis space. Nevertheless, the
situation 1s more complex as our next theorem shows.

Theorem 10. There is an indezed family L such that
(1) L ¢ L for all L, L € range(L),

(2) there exists a class preserving hypothesis space T for £ w.r.t. which £ cannot be

co-FIN learned.

Proof. Let My, My, Ms, ... be the canonical enumeration of all CLMs. We con-
struct the desired indexed family by defining the numbering 7 € R%,l- As we shall
see, all languages are finite ones and they either contain one or two numbers. This
is done as follows. By p; we denote the jth prime number.

We define m9;(p;) = m2j4+1(p;j) = 1 for all j € IN. Hence, L(1y;) as well as L(7j41)
contain p;. In order to complete the definition of 7 let #J, be the finite sequence of
length = + 1 with content(t)) = {p;}.

Then, for 2 =0,1,...,p; —1,p;+1,... we successively define 7;(x) and 7541 (x)
as follows. Simulate the computation of M; on input ¢,. If M; when fed ¢, does not
output a hypothesis or n = M;(#]) satisfies n ¢ {2j,2j + 1} then set m;(z) =
Taj+1(2) = 0. Otherwise, define m; (p;”"'Z) =1 and 7'2]-+1(p;”+3) =1 and set mj(z) =
Taj+1(z) = 0 for all z € IN for which 7; and 79;41 are not defined yet.

Obviously, 7 € R ;. Moreover, Assertion (1) is an immediate consequence of our
’
definition, since any two languages are either equal or incomparable.

We proceed with Assertion (2). Suppose the converse, i.e., (L(7;)).ew € co-FIN
with respect to 7. Hence, there must be a CLM M witnessing the co-learnability of
(L(7;))sen with respect to 7. Moreover, this CLM has to appear in the canonical
enumeration of all CLMs. Thus, there is a j such that A = M;. Now, consider M;’s
behavior when successively fed #,. We distinguish the following cases.

Case 1. M; when successively fed tJ, x € IN, does never output a number n €
{24,25 + 1}.

By construction, L(7s;) = L(m2;41) = {p;}, and therefore ## = (#})semn consti-
tutes a text for L(7y;) as well as for L(7;41). But M; on input t/ does neither output
2j nor does 1t output 25 + 1. Thus, it cannot stabilize on input #/, a contradiction.

Case 2. M; when successively fed ¢/, z € IN, outputs a number n € {2j,2j + 1}.



Then, in accordance with the definition of 7 we know that {p;} # L(m;) #
L(mj4+1) # {p;}, and that both languages contain p;. Assume A outputs 2j, say
on input ¢J. Then, ¢/ is an initial segment of a text ¢ for L(7;) but M; has definitely
deleted the only correct hypothesis for L(7s;) when fed ¢,. Hence, it cannot co-learn
L(7s;) from text ¢, a contradiction. The remaining case that A/; outputs 2j + 1 can
be analogously handled. q.ed.

Next, we are interested in learning under what conditions hypothesis spaces are
appropriate for co-inferability. This is done in the next subsection.

3.2. Main Results

This subsection is devoted to the problem why an indexed family that is co-
learnable with respect to some hypothesis space i might become co-FIN-non-
inferable with respect to other hypothesis spaces 7. First of all, we want to point
to another difference between learning in the limit and co-inference. Gold [6] proved
that every IIM which learns an indexed family £ with respect to some hypothesis
space 1 can be effectively transformed into an TIM M inferring £ with respect to
some other hypothesis space 7 provided that there is a limiting recursive compiler
from 1+ into 7. For co-learning, the situation is much more subtle. To see this, we
introduce the following notation.

Definition 5. Let ), 7 € 'Rg)l be two hypothesis spaces. T is said to be reducible
to b (abbr. 7 <, 1p) iff there exists a recursive compiler ¢ € R such that 7; = Ye(s)
for all j € IN.

Clearly, if £ is an indexed family and ¢, 7 € 7?,(2)71 are hypothesis spaces for £
satisfying 7 <. ), then £ € CLIM with respect to 7 implies £ € CLIM with respect
to 1. In contrast, for co-FIN we have the following theorem.

Theorem 11. There are an indexed family £ and class preserving hypothesis
spaces i, T for L such that

(1) 7 <c e,
(2) £ € co-FIN w.r.t. 7 but L ¢ co-FIN w.r.t. 3.

Consequently, it is only natural to ask under what circumstances reducibility of
hypothesis spaces does preserve co-learnability. Our next theorem provides a partial
answer to this question.

Theorem 12. Let L be an indexed family. Furthermore, let T be any class
preserving hypothesis space for L that contains precisely one index for every L €
range(L). Then we have:

L € co-FIN w.r.t. 7 implies L € co-FIN w.r.t. any class preserving hypothesis
space Y provided ¥ <. T.

Proof. By assumption, there exists a CLM M witnessing £ € co-FIN with respect
to 7. Let ¢ be any class preserving hypothesis space for £ with ¢ <. 7. We have to
construct a CLM M that co-FIN—infers £ with respect to 1. The desired CLM M
may be defined as follows. Let L € range(L), and let ¢t € tezt(L). Then, M when
successively fed (t,)yen works as follows:

M simulates M when successively fed (ty)yemw and keeps track of the following



sets I(7,y), C(¢,y), and G(¢,y) of 7 and ¢ indices, respectively. Let I(r,y) =
{M(t,)]| =z < y}. That is, I(7,y) is the set of all 7 indices that M has definitely
deleted when successively fed ¢,. Since 7 is a one-to-one hypothesis space, we know
that none of the indices j € I(7,y) may satisfy L = L(7;). However, we have to
ensure that M definitely deletes all indices i in the hypothesis space i that are
equivalent to one of the r—indices in I(7,y). Therefore, M additionally computes
C(¥,y) = {e(i)] 0 < i <y, e(i) € I(r,y)}, and by dovetailing, it successively
outputs all elements in C'(¢,y). Moreover, let a, = min(IN \ I(7,y)), ie., ay is
M’s actual guess. The CLM M seeks the least index iy such that c(iy) = a,, and
computes G(1,y) = {i| iy < i< iy +y, c(i) = ay}. Note that the unbounded search
for i, has to terminate, since v and 7 are class preserving hypothesis spaces and
¥ <. 7. Again, by dovetailing it successively outputs all elements from G(%,y).

It remains to show that M witnesses £ € co-FIN with respect to ¢. Let a =
min(IN \ {M(t,)| y € IN}), i.e., a is the index the CLM M stabilizes to. We have
to argue that M outputs all natural numbers except 7, where ¢ is the least number
satisfying ¢(i) = a. In accordance with M'’s definition it is obvious that A/ does not
output i. Moreover, by the definition of the sets I(r,y) and (3, y) one straightfor-
wardly obtains that M sometimes outputs all ¢)—indices j with L # L(v;). Hence, it
remains to argue that all but the ¢—index ¢ of I are output, too. But this is ensured
by the definition of the set G(v,y) in which M successively keeps track of all other
possible ¢)-indices. Finally, if M changes its actual guess, say from a, to ayy1 then
any number in (3, y) which has not already been output has to appear in I(1,y+7)
for some r € IN. Hence, M co-FIN—learns £ with respect to 1. q.e.d.

Note that the latter theorem establishes a certain type of “co-reducibility,” i.e.,
instead of requiring 7 <. ¥, as for “traditional” learning types, we demand ¢ <, 7.
This is, in general, a stronger requirement, since ¥ <, 7 implies 7 <; 1. The latter
implication easily follows, since 7 is a one-to-one hypothesis space.

Moreover, the latter theorem can be successfully applied to solve the intriguing
problem whether or not AFIN C co-AFIN. The affirmative answer is provided by
our next theorem.

Theorem 13. co-AFIN \ AFIN # ()

Proof. First, we define the desired indexed family £ witnessing the announced
separation. For the sake of presentation, we describe £ as a family of languages over
an alphabet X. As we shall see, AFIN and co-AFIN may be even separated over a
one letter alphabet. We set ¥ = {a}, and define L; = {a”| n € IN* n # j} for all
j € IN*. Clearly, £ = (L;)jen+ is an indexed family.

Claim 1. L ¢ AFIN

It suffices to show that £ cannot be finitely learned with respect to the hypothe-
sis space L. Suppose the converse, i.e., there is an IIM M witnessing £ € FIN
with respect to £. We consider M’s behavior on the following text Z;,,;. M is fed
a?,a®, ... until it outputs the hypothesis 1. In case it does not, we are already done,
since then M does not finitely learn L; from its lexicographically ordered text.
But if it does, say on input a?,a3,... a”, we may define t;,, as follows. We set

tfool = a’?,a3,...,a%, a,a®? a3, . ie., o001 is a text for Ly 1. However, when



successively fed t,,; the IIM A converges to 1, and L1 # Lz4+1, a contradiction.

The remaining part of the proof, i.e., the demonstration of £ € co-AFIN is
divided into two parts. First, we show that £ € co-FIN with respect to £. Next, we
apply Theorem 5 to prove that £ € co-FIN with respect to every class preserving
hypothesis space v for L.

Claim 2. L € co-FIN with respect to L.

The desired CLM M can be defined as follows. Let L € range(L), t € text(L),
and let y € IN. We define:

M(ty) = “If y =0, then compute the unique number j such that ¢, = @ . Output
Jj, and request the next input.
For y > 1 proceed inductively as follows. Let I(y) be the set of all numbers
n such that tf = {a”| n € I(y)}. If I(y)\ I(y — 1) # 0, then output j =
min(I(y) \ I(y — 1)), and request the next input.
Otherwise, output nothing, and request the next input.”

Since L € range(L), there is a unique number k such that L = L. It remains
to show that A stabilizes on ¢ to k. In accordance with the definition of £ we know
that a® € Ly, for all n € INT \ {k}. Hence, k is never output by M. Furthermore,
since ¢ is a text for Ly, all numbers n € INt \ {k} must be sometimes output by M.
Thus, M stabilizes to k.

Claim 3. L € co-AFIN

Let ¢ € R2, be any class preserving hypothesis space for £. By Theorem 5 it
suffices to show that there is a recursive compiler ¢ € R such that ¢ <. L. For
the sake of presentation we suppress all the technicalities dealing with the relevant
encoding, i.e., the isomorphism between the string over the alphabet {a} and the
natural numbers. The desired compiler ¢ can be defined as follows. Let ¢ € IN.
Compute 1;(0),%;(1), ... until the least z € IN with ;(2) = 0 is found. Since ¢ is a
class preserving hypothesis space, this unbounded search has to terminate. Moreover,
the number z encodes the unique missing string, say a*, over the alphabet {a} that
characterizes L(1);). Thus, we can define ¢(7) = k. Obviously, L(t;) = L, and hence
¢ is a compiler from ¥ to L. q.e.d.
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