
SIIM -TR-A-01-03

SIIM Technical Report

Learning Approximations of Recursive Concepts

by

Steffen Lange, Gunter Grieser

and Thomas Zeugmann

Schriftenreihe der Institute für

Informatik/Mathematik

Serie A

March 4, 2001

Universität zu Lübeck
Technisch-Naturwissenschaftliche Fakultät

Email: thomas@tcs.uni-luebeck.de Phone: +49-451-7030-422
Fax: +49-451-7030-438

Learning Approximations of Recursive Concepts

Steffen Lange
Deutsches Forschungszentrum

für Künstliche Intelligenz

Stuhlsatzenhausweg 3

66123 Saarbrücken, Germany

lange@dfki.de

Gunter Grieser
FB Informatik

TU Darmstadt

Alexanderstraße 10

64283 Darmstadt, Germany

grieser@informatik.tu-darmstadt.de

Thomas Zeugmann
Institut für Theoretische Informatik

Med. Universität zu Lübeck

Wallstraße 40

23560 Lübeck, Germany

thomas@tcs.mu-luebeck.de

March 4, 2001

Abstract

This paper provides a systematic study of inductive inference of indexable
concept classes in learning scenarios where the learner is successful if its final
hypothesis describes a finite variant of the target concept, i.e., learning with
anomalies. Learning from positive data only and from both positive and nega-
tive data is distinguished.

The following learning models are studied: learning in the limit, finite iden-
tification, set-driven learning, conservative inference, and behaviorally correct
learning.

The attention is focused on the case that the number of allowed anomalies
is finite but not a priori bounded. However, results for the special case of
learning with an a priori bounded number of anomalies are presented, too.
Characterizations of the learning models with anomalies in terms of finite tell-
tale sets are provided. The observed varieties in the degree of recursiveness
of the relevant tell-tale sets are already sufficient to quantify the differences in
the corresponding learning models with anomalies. Finally, a complete picture
concerning the relations of all models of learning with and without anomalies
mentioned above is derived.

1

2 Steffen Lange, Gunter Grieser and Thomas Zeugmann

1. Introduction

Induction constitutes an important feature of learning. The corresponding theory

is called inductive inference. Inductive inference may be characterized as the study of

systems that map evidence on a target concept into hypotheses about it. Investigating

scenarios in which the sequence of hypotheses stabilizes to an accurate and finite

description of the target concept is of particular interest. Precise definitions of the

notions evidence, stabilization, and accuracy go back to Gold [11] who introduced the

model of learning in the limit.

The present paper deals with inductive inference of indexable classes of recursive

concepts (indexable classes, for short). A concept class is said to be an indexable

class if it possesses an effective enumeration with uniformly decidable membership.

Angluin [2] started the systematic study of learning indexable concept classes. Her

pioneering paper and succeeding publications (cf. Zeugmann and Lange [20], for an

overview) attracted attention, since most natural concept classes are indexable. For

example, the class of all context sensitive, context free, regular, and pattern languages

as well as the set of all boolean formulas expressible by a monomial, a k-CNF, a k-

DNF, and a k-decision list constitute indexable classes.

As usual, we distinguish learning from positive data and learning from positive and

negative data, synonymously called learning from text and informant, respectively. A

text for a target concept c is an infinite sequence of elements of c such that every

element from c eventually appears. Alternatively, an informant is an infinite sequence

of elements exhausting the underlying learning domain that are classified with respect

to their containment in the target concept.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM),

takes as input larger and larger initial segments of a text (an informant) and outputs,

from time to time, a hypothesis about the target concept. The set of all admissible

hypotheses is called hypothesis space. When learning of indexable classes is consid-

ered, it is only natural to require that the hypothesis space is an effective enumeration

of a (possibly) larger indexable concept class. This assumption underlies almost all

studies (cf., e.g., [2, 20]).

Gold’s [11] original model requires the sequence of hypotheses to converge to a

hypothesis correctly describing the target concept. However, from a viewpoint of po-

tential applications, it suffices in most cases that the final hypothesis approximates

the target concept sufficiently well. To capture this aspect, Blum and Blum [5] intro-

duced a quite natural refinement of Gold’s model. In their setting of learning recursive

functions with anomalies, it is admissible that the learner’s final hypothesis may differ

from the target function at finitely many data points. Case and Lynes [7] adapted

this model to language learning.

Learning with anomalies has been intensively studied in the context of learning

recursive functions and recursively enumerable languages (cf., e.g., Case and Smith [8],

Daley [9], Kinber and Zeugmann [13], Jain et al. [12] and the references therein).

Learning Approximations of Recursive Concepts 3

Preliminary results concerning the learnability of indexable classes with anomalies

can be found in Tabe and Zeugmann [18]. Note that Baliga et al. [3] studied the

learnability of indexable classes with anomalies, too. However, unlike all other work

on learning indexable classes, Baliga et al. [3] allow the use of arbitrary hypothesis

spaces including those not having a decidable membership problem. Therefore, the

results from Baliga et al. [3] do not directly translate into our setting.

The present paper provides a systematic study of learning indexable concept classes

with anomalies. We investigate the following variants of Gold-style concept learning:

learning in the limit, finite identification, set-driven learning, conservative inference,

and behaviorally correct learning. We relate the resulting models of learning with

anomalies to one another as well as to the corresponding versions of learning without

anomalies. We mainly focus our attention to the case that the number of allowed

anomalies is finite but not a priori bounded. However, we also present results that

affect the special case that the number of allowed anomalies is a priori bounded.

Finally, we mention prototypical results. In case of learning with anomalies from

positive data, the learning power of set-driven learners, conservative learners, and

unconstrained IIMs does coincide. In contrast, when anomaly-free learning is con-

sidered, conservative inference and set-driven learning are strictly less powerful. A

further difference to learning without anomalies is obtained by showing that behav-

iorally correct learning with anomalies is strictly more powerful than learning in the

limit with anomalies. Furthermore, if the number of allowed anomalies is finite but

not a priori bounded, then there is no need to use arbitrary hypothesis spaces for

designing superior behaviorally correct learners, thus refining the corresponding re-

sults by Baliga et al. [3]. However, if the number of anomalies is a priori bounded,

it is advantageous to use arbitrary hypothesis spaces. For establishing these results,

we provided characterizations of the corresponding models of learning with anoma-

lies in terms of finite tell-tale sets (cf. Angluin [2]). The observed varieties in the

degree of recursiveness of the relevant tell-tale sets are already sufficient to quantify

the differences in the corresponding learning models with anomalies.

2. Preliminaries

2.1. Basic notions

Let N = {0, 1, 2, . . .} be the set of all natural numbers and let N+ = N \ {0}. By

〈·, ·〉: N×N → N we denote Cantor’s pairing function. Let A and B be sets. As usual,

A4B denotes the symmetrical difference of A and B, i.e., A4B = (A\B)∪(B \A).

We write A # B to indicate that A4B 6= ∅. For all a ∈ N, A =a B iff card(A4B) ≤
a, while A =∗ B iff card(A4B) < ∞.

Any recursively enumerable set X is called a learning domain. By ℘(X) we denote

the power set of X . Let C ⊆ ℘(X) and let c ∈ C. We refer to C and c as to a concept

4 Steffen Lange, Gunter Grieser and Thomas Zeugmann

class and a concept, respectively. Sometimes, we will identify a concept c with its

characteristic function, i.e., we write c(x) = +, if x ∈ c, and c(x) = −, otherwise.

We study the learnability of indexable concept classes (cf. Angluin [2]). A class of

non-empty concepts C is said to be an indexable concept class if there are an effective

enumeration (cj)j∈N of all and only the concepts in C and a recursive function f such

that, for all j ∈ N and all x ∈ X , f(j, x) = cj(x) holds. By IC we denote the collection

of all indexable classes.

Let (Tj)j∈N be a family of finite sets. (Tj)j∈N is said to be uniformly recursively

enumerable (recursively enumerable, for short) iff there is an effective procedure that,

on every input j ∈ N, enumerates the finite set Tj. Moreover, (Tj)j∈N is said to be

uniformly recursively generable (recursively generable, for short) iff there is an effective

procedure that, on every input j ∈ N, generates all elements of the finite set Tj and

stops.

2.2. Gold-style concept learning

Let X be a learning domain, let c ⊆ X be a concept, and let t = (xn)n∈N be an

infinite sequence of elements from c such that {xn | n ∈ N} = c. Then, t is said

to be a text for c. By Text(c) we denote the set of all texts for c. Let t be a text

and let y ∈ N. Then, ty denotes the initial segment of t of length y + 1, and we set

content(ty) = {xn | n ≤ y}. Furthermore, let σ = x0, . . . , xn−1 be any finite sequence.

Then we use |σ| to denote the length n of σ, and let content(σ) denote the content

of σ. Let c be a concept; then we write SegText(c) for the set of all finite sequences

of elements from c. Additionally, let t be a text and let τ be a finite sequence; then

we use σ � t and σ � τ to denote the sequence obtained by concatenating σ onto the

front of t and τ , respectively. Furthermore, we write σ @ τ and σ @ t in case that σ

constitutes a proper initial segment of τ and t, respectively.

Let (wj)j∈N be the lexicographically ordered enumeration of all elements in the

learning domain X , let c ⊆ X be a concept, and m be the least number such that

wm ∈ c. Then, the canonical text tc = (xn)n∈N for c is defined as follows: x0 = wm.

For all n ∈ N, if wn+1 ∈ c then xn+1 = wn+1, otherwise xn+1 = xn. Furthermore, for

every indexable class C we set Text(C) =
⋃

c∈N Text(c).

As in Gold [11], we define an inductive inference machine (abbr. IIM) to be an

algorithmic mapping from initial segments of texts to N ∪ {?}. Thus, an IIM either

outputs a hypothesis, i.e., a number encoding a certain computer program, or “?,”

a special symbol representing the case where the machine outputs “no conjecture.”

Note that an IIM, when learning a target class C, is required to produce an output

on every initial segment of all texts in Text(C).

The numbers output by an IIM are interpreted with respect to a suitably chosen

hypothesis space H = (hj)j∈N. Since we exclusively deal with the learnability of classes

C ∈ IC, we always assume that H is also an indexing of some possibly larger indexable

Learning Approximations of Recursive Concepts 5

concept class. Hence, membership is uniformly decidable in H, too. When an IIM M

outputs some number j, we interpret it to mean that M hypothesizes hj.

Let C ∈ IC , let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. If

C = {hj | j ∈ N}, then H is said to be a class preserving hypothesis space for C
(cf. Lange and Zeugmann [15]). Furthermore, H is called class admissible hypothesis

space for C with respect to a provided that, for every c ∈ C, there is an index j such

that hj =a c (cf. Tabe and Zeugmann [18]). If a = 0, then H constitutes a class

comprising hypothesis space (cf. [15]).

We define convergence of IIMs as usual. Let t be a text and let M be an IIM. The

sequence (M(ty))y∈N of M ’s hypotheses converges to a number j iff all but finitely

many terms of it are equal to j.

Now, we are ready to define learning in the limit.

Definition 1 (Gold [11], Case and Lynes [7]). Let C ∈ IC, let c be a concept,

let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M LimaTxtH–

identifies c iff, for every t ∈ Text(c), there is a j ∈ N with hj =a c such that the

sequence (M(ty))y∈N converges to j.

Furthermore, M LimaTxtH–identifies C iff M LimaTxtH–identifies each c′ ∈ C.
Finally, LimaTxt denotes the collection of all classes C ′ ∈ IC for which there are

a hypothesis space H′ = (h′j)j∈N and an IIM M ′ that LimaTxtH′–identifies C ′.
Subsequently, we write LimTxt instead of Lim0Txt . We adopt this convention to

all learning types defined below.

In general, it is not decidable whether or not an IIM has already converged on

a text t for the target concept c. Adding this requirement to the above definition

results in finite learning (cf. Gold [11]). The corresponding learning type is denoted

by FinaTxt , where again a ∈ N ∪ {∗}.

Definition 2 (Gold [11]). Let C be an indexable class, let c be a concept, let H =

(hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M FinaTxtH–identifies c

iff, for every t ∈ Text(c), there exist j, m ∈ N such that c =a hj, M(tr) = ? for all

r < m, and M(ty) = j for all y ≥ m.

Furthermore, M FinTxtH–identifies C iff M FinTxtH–identifies each c′ ∈ C.
Next, we define conservative IIMs. Conservative IIMs maintain their actual hy-

pothesis at least as long as they have not seen data contradicting it.

Definition 3 (Angluin [2]). Let C ∈ IC, let c be a concept, let H = (hj)j∈N be

a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M ConsvaTxtH–identifies c iff M

LimaTxtH–identifies c and, for all t ∈ Text(c) and for any two consecutive hypotheses

k = M(ty) and j = M(ty+1), if k ∈ N and k 6= j, then content(ty+1) 6⊆ hk.

Finally, M ConsvaTxtH–identifies C iff M ConsvaTxtH–identifies each c′ ∈ C.
For every a ∈ N∪{∗}, the resulting learning type ConsvaTxt is defined analogously

to Definition 1.

6 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Next, we define set-driven IIMs. Intuitively speaking, the output of a set-driven

IIM depends exclusively on the content of its input, thereby ignoring the order as well

as the frequency in which the examples occur.

Definition 4 (Wexler and Culicover [19]). Let C ∈ IC, let c be a concept, let

H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M SdraTxtH–identi-

fies c iff M LimaTxtH–identifies c and, for all t, t′ ∈ Text(C) and for all n, m ∈ N, if

content(tn) = content(t′m), then M(tn) = M(t′m).

Furthermore, M SdraTxtH–identifies C iff M SdraTxtH–identifies each c′ ∈ C.
For every a ∈ N ∪ {∗}, the resulting learning type SdraTxt is defined analogously

to Definition 1.

Next, we define behaviorally correct learning.

Definition 5 (Barzdin [4], Case and Lynes [7]). Let C ∈ IC, let c be a concept,

let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M BcaTxtH–

identifies c iff, for every t ∈ Text(c) and for all but finitely many y ∈ N, hM(ty) =a c.

Furthermore, M BcaTxtH–identifies C iff M BcaTxtH–identifies each c′ ∈ C.
For every a ∈ N ∪ {∗}, the resulting learning type BcaTxt is defined analogously

to Definition 1.

Finally, we define consistent IIMs (cf. Gold [11]). Let C ∈ IC, let H be a hypothesis

space, and let M be an IIM. Then, M is said to be consistent for C with respect

to H provided that, for all t ∈ Text(C) and all y ∈ N, if M(ty) = k for some

k ∈ N, then content(ty) ⊆ hk. Intuitively speaking, the hypotheses of a consistent

IIM correctly reflect the data on which they were built upon. For all a ∈ N∪{∗} and

all learning types LtaTxt defined above, we let c-LtaTxt denote the collection of all

classes C ∈ IC for which there are a hypothesis space H and a consistent IIM that

LtaTxtH–identifies C.

3. Learning from positive data

In this section, we study the power and the limitations of the various models of

learning with anomalies. We relate these models to one another as well as to the

different models of anomaly-free learning. We are mainly interested in the case that

the number of allowed anomalies is finite but not a priori bounded. For giving an

impression of how the overall picture changes when the number of allowed anomalies

is a priori bounded, we also present results for this case.

Proposition 1 summarizes the known relations between the considered models of

anomaly-free learning from text.

Proposition 1 (Gold [11], Lange and Zeugmann [15]).

FinTxt ⊂ SdrTxt = ConsvTxt ⊂ LimTxt = BcTxt ⊂ IC.
In the setting of learning recursive functions the first observation made when com-

paring learning in the limit with anomalies to behaviorally correct inference was the

Learning Approximations of Recursive Concepts 7

error correcting power of Bc-learners, i.e., Ex ∗ ⊆ Bc (cf., e.g., Case and Smith [8]).

Interestingly enough, this result did not translate into the setting of learning recur-

sively enumerable languages from positive data. But still, a certain error correcting

power is preserved in this setting, since LimTxta ⊆ BcTxt b provided a ≤ 2b (cf. Case

and Lynes [7]).

When comparing learning with and without anomalies in our setting of learning

indexable classes, it turns out that even finite inference may become more powerful

than Bc-learning.

Theorem 1. Fin1Txt \BcTxt 6= ∅.

Proof. Let c = {b}∗ and, for all k ∈ N, let ck = c \ {bk}. Let C be the collection of

c and of all infinite concepts ck. It is folklore that C /∈ LimTxt , and thus C /∈ BcTxt

(cf. Proposition 1). Finally, since, for all k ∈ N+, c =1 ck, an IIM that always guesses

c witnesses C ∈ Fin1Txt . 2

However, the opposite is also true. For instance, PAT , the well-known class of all

pattern languages1 (cf. Angluin [2]), witnesses the even stronger result:

Theorem 2. ConsvTxt \ Fin∗Txt 6= ∅.

Proof. Recall that PAT ∈ ConsvTxt (cf. Angluin [2]). Furthermore, PAT contains

a singleton language L as well as an infinite language L′ with L ⊂ L′. Since every

initial segment of a text for L constitutes an initial segment of a text for L′ and since

L 6=∗ L′, no IIM can Fin∗Txt–identify L and L′. 2

3.1. The case of a finite number of anomalies

As we shall see, the relations between the standard learning models change consid-

erably, if it is no longer required that the learner almost always outputs hypotheses

correctly describing the target concept. The following picture displays the established

coincidences and differences by relating the models of learning with anomalies to one

another and by ranking them in the hierarchy of the models of anomaly-free learning.

Fin∗Txt ⊂ Sdr ∗Txt = Consv ∗Txt = Lim∗Txt ⊂ Bc∗Txt ⊂ IC
∪ ∪ ∪ ∪ ∪

FinTxt ⊂ SdrTxt = ConsvTxt ⊂ LimTxt = BcTxt ⊂ IC

To achieve the overall picture, we establish characterizations of all models of learn-

ing with a finite but not a priori bounded number of anomalies. On the one hand,

we present characterizations in terms of finite tell-tale sets. On the other hand, we

prove that some of the learning models coincide.

1Let Σ be a non-empty finite alphabet of symbols and let X be an infinite set of variables such
that Σ∩X = ∅. Then, every non-empty string in (Σ∪X)∗ constitutes a pattern. The language L(p)
defined by a pattern p is the set of all strings that can be obtained by replacing the variables in p by
non-empty strings from Σ∗. Thereby, each occurrence of a variable has to be replaced by the same
string. Now, PAT is the set of all languages L for which there is a pattern p such that L = L(p).

8 Steffen Lange, Gunter Grieser and Thomas Zeugmann

The characterizations of Lim∗Txt and Fin∗Txt are similar to the known character-

ization of LimTxt and FinTxt , respectively (cf. [2, 14]).

Proposition 2 (Tabe and Zeugmann [18]). For all C ∈ IC: C ∈ Lim∗Txt iff there

are an indexing (cj)j∈N of C and a recursively enumerable family (Tj)j∈N of finite sets

such that

(1) for all j ∈ N, Tj ⊆ cj,

(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =∗ cj.

Theorem 3. For all C ∈ IC: C ∈ Fin∗Txt iff there are an indexing (cj)j∈N of C and

a recursively generable family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,

(2) for all j, k ∈ N, if Tj ⊆ ck, then ck =∗ cj.

Proof. Necessity. Assume that a hypothesis space H = (hj)j∈N and an IIM M that

Fin∗TxtH–learns C are given. Moreover, let (cj)j∈N be any indexing of C. The family

(Tj)j∈N is defined as follows.

Let j ∈ N and let tcj be the canonical text of cj. Since M finitely infers cj, there

exists a least y ∈ N such that M(t
cj
y) = m for some m ∈ N. We set Tj = content(t

cj
y).

We have to show that (Tj)j∈N satisfies the properties (1) and (2). By construction,

(1) is obviously fulfilled. For proving (2), let j, k ∈ N such that Tj ⊆ ck. Due to our

construction, there is an initial segment of cj’s canonical text tcj , say t
cj
y , such that

content(t
cj
y) = Tj and M(t

cj
y) = m. Since M finitely learns cj, we know hm =∗ cj.

Because of Tj ⊆ ck, t
cj
y is also an initial segment of some text t for ck. Taking into

account that M finitely infers ck from t and that M(ty) = m, we get hm =∗ ck, too.

Sufficiency. Let H = (hj)j∈N be the hypothesis space such that hj = cj for all

j ∈ N. It suffices to show that there is an IIM M that Fin∗TxtH–identifies C. So, let

c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:

If y = 0 or M(ty−1) = ?, goto (A). Otherwise, output j = M(ty−1).

(A) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty). If

there is a j passing the test, output the minimal one. Else, output “?.”

One directly sees that M learns as required. 2

In contrast to Proposition 1, when a finite but not a priori bounded number of

errors in the final hypothesis is allowed, conservative IIMs become exactly as powerful

as unconstrained IIMs.

Learning Approximations of Recursive Concepts 9

Theorem 4. Lim∗Txt = Consv ∗Txt.

Proof. Let C ∈ Lim∗Txt , let H = (hj)j∈N be a hypothesis space and let M be an IIM

that Lim∗TxtH–identifies C. The conservative IIM M ′ uses the following hypothesis

space H′. For all j ∈ N and x ∈ X , we set h′j,x = hj \ {x}. Let H′ be the canonical

enumeration of all those concepts h′j,x.

Let c ∈ C, let t = (xj)j∈N be a text for c, and let y ∈ N.

IIM M ′: “On input ty do the following:

If M(ty) = ?, output “?.” Otherwise, determine j = M(ty) and output the

canonical index of h′j,x0
in H′.”

By construction, M ′ is conservative. Since M converges on t to a hypothesis describing

a finite variant of the target concept c, M ′ will do as well. 2

The conservative IIM M ′ used above always outputs a hypothesis that definitely

contradicts the data seen so far, and thus M ′ is inconsistent. Nevertheless, this

slightly unconventional behavior guarantees that M ′ exclusively performs justified

mind changes. Naturally, the question arose whether or not one can simulate the

given IIM M by a learner that is both conservative and consistent. The affirmative

answer is provided by Theorem 7. Before proving it, we need the following results

which may be interesting in their own right.

Theorem 5. SdraTxt ⊆ c-ConsvaTxt for all a ∈ N ∪ {∗}.

Proof. Let a ∈ N ∪ {∗} and let C ∈ SdraTxt . Let (cj)j∈N be an indexing of C such

that, for all c ∈ C, there are infinitely many j with cj = c. Moreover, let H = (hj)j∈N

be a hypothesis space, and let M be a set-driven IIM that LimaTxtH–infers C. Let X
be the underlying learning domain. Without loss of generality we may assume that

M is total and consistent. That is, M always outputs a consistent hypothesis when

fed any finite sequence σ ∈ SegText(X). Hence, M when fed any text t for any c ∈ C,

converges to an index z such that hz =a c and c ⊆ hz.

Before defining the wanted conservative IIM M ′, we specify a suitable hypothesis

space Ĥ = (ĥ〈i,j,k〉)i,j,k∈N.

For the sake of readability, in the following, we consider the given set-driven IIM M

to be a learning device which receives finite sets of strings as input instead of finite

sequences. Let (Fj)j∈N denote any effective repetition-free enumeration of all finite

subsets of X . We assume that, given any finite F ⊆ X , we may effectively determine

F ’s index #(F) in the enumeration (Fj)j∈N, i.e., #(F) = n with Fn = F . Let (wj)j∈N

be the lexicographically ordered enumeration of all elements in X . Moreover, for all

c ⊆ X and all m ∈ N, we denote by cm the concept {wz | z ≤ m, wz ∈ c}.

Let i, j, k ∈ N. If Fj 6⊆ hi ∩ ck or M(Fj) 6= i, we set ĥ〈i,j,k〉 = {w0}. Otherwise, for

all z ∈ N, we let wz ∈ ĥ〈i,j,k〉 iff (i) or (ii) is fulfilled, where

(i) wz ∈ Fj.

10 Steffen Lange, Gunter Grieser and Thomas Zeugmann

(ii) wz /∈ Fj, wz ∈ hi ∩ ck and, for all V ⊆ hz
i ∩ cz

k, M(Fj ∪ V) = i.

Note that, by construction, ĥ〈i,j,k〉 is finite or it equals hi ∩ ck. Moreover, if ĥ〈i,j,k〉 6=
{w0}, then Fj ⊆ ĥ〈i,j,k〉 ⊆ hi ∩ ck.

Since M is total and (cj)j∈N is an indexing of C and membership is uniformly

decidable in H, we know that ĥ〈i,j,k〉 is recursive. Hence, membership is uniformly

decidable in Ĥ, too.

Next, we show that Ĥ is a class comprising hypothesis space for C. Let c ∈ C
and let k ∈ N with ck = c. Since M is set-driven IIM and learns c, there has to

be a finite set F ⊆ c such that, for all finite sets V ⊆ c, M(F) = M(F ∪ V) = i,

and hi =a c (cf. Fulk [10]). Moreover, since M is consistent, c ⊆ hi, and therefore

ĥ〈i,#(F),k〉 = hi ∩ ck = c.

Furthermore, Ĥ’s definition immediately implies:

Fact 1. Let i, j, k ∈ N and let V be some finite subset of X . Then, we have:

If M(Fj) = i, Fj ∪ V ⊆ ck ∩ hi, and M(Fj ∪ V) 6= i, then V 6⊆ ĥ〈i,j,k〉.

Fact 2. Let i, j, k ∈ N and let V be some finite subset of X . Then, we have:

If M(Fj) = i, Fj ∪ V ⊆ ck ∩ hi, and M(Fj ∪ V) 6= i, then ĥ〈i,j,k〉 is finite.

Now, we are ready to define an IIM M ′ that c-ConsvTxt Ĥ–identifies C. Let c ∈ C,

t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty do the following:

If y = 0, then compute i = M(content(ty)), j = #(content(ty)), and the least k

with content(ty) ⊆ ck. Output 〈i, j, k〉. Otherwise, goto (A).

(A) Let M ′(ty−1) = 〈i, j, k〉. Test whether or not content(ty) ⊆ ĥ〈i,j,k〉. If

it is, output 〈i, j, k〉. Otherwise, compute i′ = M(content(ty)), j′ =

#(content(ty)) and the least k′ > k with content(ty) ⊆ ck′ . Output

〈i′, j′, k′〉.”

By definition, M ′ is consistent and it outputs a hypothesis in every step. Moreover,

M ′ exclusively performs justified mind changes. Thus, M ′ is also conservative. Next,

we show that M ′ learns c from text t. We distinguish two cases.

Case 1. c is finite.

Let y′ be the least index such that content(ty′) = c and let y ≤ y′ be the least index

with M ′(ty) = M ′(ty′). Let M ′(ty) = 〈i, j, k〉. By definition, i = M(content(ty)), j =

#(content(ty)), and content(ty) ⊆ ck. Since content(ty) ⊆ content(ty′) ⊆ ĥ〈i,j,k〉 ⊆
hi ∩ ck, we obtain M(content(ty)) = M(content(ty′)) = i (cf. Fact 1). Since M is a

set-driven and consistent IIM that learns c, we know that hi =a c and c ⊆ hi. Finally,

since content(ty′) ⊆ ĥ〈i,j,k〉 and since, by construction, ĥ〈i,j,k〉 ⊆ hi, we may conclude

ĥ〈i,j,k〉 =a c, and thus we are done.

Case 2. c is infinite.

Learning Approximations of Recursive Concepts 11

This part of the proof relies on the following claim.

Claim 1. For all y, z ∈ N, if M ′(ty) = z and c ⊆ ĥz, then c =a ĥz.

Without loss of generality, let y be the least index with M ′(ty) = z. By definition,

z = 〈i, j, k〉, where i = M(content(ty)), j = #(content(ty)), and content(ty) ⊆ ck.

Suppose to the contrary that c ⊆ ĥz and c 6=a ĥz. Note that, by construction,

c ⊆ ĥ〈i,j,k〉 ⊆ hi ∩ ck, and therefore, hi 6=a c. Now, since M learns c, there are r, i′ ∈ N
such that M(content(ty+r)) = i′ and hi′ =a c. Clearly, i′ 6= i. Finally, because of

content(ty+r) ⊆ c ⊆ ck∩hi, ĥ〈i,j,k〉 must be finite (cf. Fact 2). Since c is infinite, ĥ〈i,j,k〉
cannot constitute a proper superset of c, a contradiction, and the claim follows.

It remains to show that there are indices y, z such that M ′(ty) = z, ĥz =a c, and

c ⊆ ĥz. Since M ′ is conservative, this will suffice.

Since M is set-driven and learns c, there has to be a finite set F ⊆ c such that, for

all finite sets V ⊆ c, M(F) = M(F ∪ V) = i, and hi =a c (cf. Fulk [10]). Moreover,

since M is consistent, it holds c ⊆ hi.

Next, let y be the least index such that F ⊆ content(ty) and let 〈iy, jy, ky〉 = M ′(ty).

Obviously, if c ⊆ ĥ〈iy ,jy ,ky〉, then, by Claim 1, we are immediately done. Otherwise,

by Claim 1, we may assume that c \ ĥ〈iy ,jy ,ky〉 6= ∅. Hence, there is a least y′ > y such

that content(ty′) 6⊆ ĥ〈iy ,jy ,ky〉 and thus M ′ performs a mind change, i.e., it computes

〈iy′ , jy′ , ky′〉 = M ′(ty′).

Now, by the choice of y, we know that iy′ = i. Moreover, jy′ = #(content(ty′)) and,

even more important, ky′ is the least index such that ky′ > ky and content(ty′) ⊆ cky′
.

Now, recall that, by the choice of the indexing (cj)j∈N, there is a least index k̂ > ky such

that ck̂ = c. Hence, we may conclude that ky < ky′ ≤ k̂. As above, there are two cases

to distinguish. First, if c ⊆ ĥ〈iy′ ,jy′ ,ky′ 〉, then, again by Claim 1, we are directly done.

Second, if c 6⊆ ĥ〈iy′ ,jy′ ,ky′ 〉, there is a least y′′ ∈ N such that content(ty′′) 6⊆ ĥ〈iy′ ,jy′ ,ky′ 〉.

Again, by definition, M ′ changes its mind to 〈i, #(content(ty′′)), ky′′〉, where ky′′ is the

least index with ky′ < ky′′ ≤ k̂ and content(ty′′) ⊆ cky′′
.

Finally, by simply iterating this argumentation and by taking into consideration

that, for all finite sets V with content(ty) ⊆ V ⊆ c, ĥ〈i,#(V),k̂〉 = c, one directly sees

that M ′ eventually outputs a hypothesis z with c ⊆ ĥz and ĥz =a c, and thus, we are

done. 2

Theorem 6. Lim∗Txt ⊆ Sdr ∗Txt .

Proof. Let C ∈ Lim∗Txt . By Proposition 2, there is an indexing (cj)j∈N of C and a

recursively enumerable family (Tj)j∈N of finite set such that, for all j, k ∈ N, (1) and

(2) are fulfilled, where

(1) Tj ⊆ cj.

(2) If Tj ⊆ ck ⊆ cj, then ck =∗ cj.

12 Steffen Lange, Gunter Grieser and Thomas Zeugmann

For all j, y ∈ N, we let T
(y)
j denote the finite subset of Tj that is enumerated within y

steps. Note that, for all j, y, y′ ∈ N, it is decidable whether or not T
(y)
j = T

(y′)
j . For

technical reasons, it is convenient to assume that, for all j ∈ N, Tj 6= ∅ and T
(0)
j = ∅.

Clearly, this assumption is justified, since C exclusively contains non-empty concepts.

Before we define a set-driven IIM M ′ that learns C, we define a consistent IIM M

that Lim∗TxtH–identifies C, where H = (cj)j∈N. The required set-driven IIM M ′ will

use M as its subroutine.

Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty proceed as follows: For all j ≤ y, test whether or not T
(y)
j ⊆

content(ty) ⊆ cj. If there is a j passing this test, then output the minimal one.

Otherwise, determine the minimal j with content(ty) ⊆ cj and output j.”

The verification that M behaves as required is straightforward.

We continue in defining a hypothesis space H′ = (h′〈j,k〉)j,k∈N and a set-driven

IIM M ′ that Lim∗TxtH′–identifies C. Let (wj)j∈N be an effective enumeration of all

elements in X . Let j, k ∈ N. For all z ∈ N, we let wz ∈ h〈j,k〉 iff one of the conditions

(i) and (ii) is fulfilled, where

(i) z ≤ k and wz ∈ cj.

(ii) z > k, wz ∈ cj, and T
(z)
j = T

(k)
j .

Now, one easily verifies that membership is uniformly decidable inH′. Moreover, since

(cj)j∈N is an indexing of C and since all the sets Tj are finite, we may immediately

conclude:

Fact 1. For all j ∈ N and all k ∈ N, if T
(k)
j = Tj, then h′〈j,k〉 = cj.

Fact 2. For all j, k ∈ N, if T
(k)
j 6= Tj, then h′〈j,k〉 is finite.

Now, we are ready to define M ′. So, let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M ′: “On input ty do the following:

Arrange the elements in content(ty) in lexicographical order without repetitions.

Let σ = x0, . . . , xr be the resulting sequence. Determine j = M(σ). Test

whether or not T
(r)
j ⊆ content(σ). In case it is, goto (A). Otherwise, goto (B).

(A) Determine m = min{n | T (n)
j = T

(r)
j } and output 〈j, m〉.

(B) Output 〈j, 0〉.”

By definition, M ′ is set-driven. We have to show that M ′ learns as required. For

that purpose, we distinguish two cases.

Case 1. c is infinite.

Learning Approximations of Recursive Concepts 13

Recall that M , when fed the lexicographically ordered text for c, converges to a

hypothesis j with cj =∗ c. Due to M ’s definition we have Tj ⊆ c. Thus, M ′ converges

to 〈j, m〉, where m = min{n | T
(n)
j = Tj}. Hence, by Fact 1, h′〈j,m〉 = cj, and we are

done.

Case 2. c is finite.

Let σ be the finite sequence obtained by arranging the elements of c in lexicograph-

ical order without repetitions. By definition, M ′ converges on t to 〈j, m〉 = M ′(σ).

We claim that h′〈j,m〉 =∗ c. First, assume that the hypothesis 〈j, m〉 was build in accor-

dance with (B). Hence, m = 0. Since, by assumption, T
(0)
j 6= Tj, we obtain, via Fact

2, that h′〈j,m〉 is finite. Hence, h′〈j,m〉 =∗ c. Second, suppose the hypothesis 〈j, m〉 was

build due to (A). Now, if T
(m)
j 6= Tj, the same arguments yield h′〈j,m〉 =∗ c. Finally,

consider the case that T
(m)
j = Tj. Since M(σ) = j, we get Tj ⊆ content(σ) = c. More-

over, since M is consistent, we know that c = content(σ) ⊆ cj. Hence, by Property

(2) of the recursively enumerable family (Tj)j∈N, we may conclude that cj =∗ c. 2

Theorem 7. c-Consv ∗Txt = Consv ∗Txt.

Proof. The theorem is a direct consequence of Theorem 5 and 6 above.

As a closer look at the demonstration of Theorem 6 shows, every unconstrained

IIM M can be replaced by an IIM M ′ that is simultaneously set-driven and consistent

and that is at least as powerful as M . Moreover, Theorem 4 and Theorems 5 and 6

allow for the following corollary.

Corollary 8. Sdr ∗Txt = Lim∗Txt.

Note that Corollary 8 contrasts the fact that set-drivenness is a severe restriction

in case that anomalies are inadmissible (cf. Lange and Zeugmann [16]).

However, there are some differences between conservative inference and set-driven

learning, on the one hand, and learning in the limit, on the other hand, which we

want to point out next. While learning in the limit is invariant to the choice of

the hypothesis space (cf. Tabe and Zeugmann [18]), conservative inference and set-

driven learning are not. Moreover, in order to design most powerful learners that

are conservative and set-driven, respectively, it is sometimes inevitable to select a

hypothesis space that contains concepts which are not subject to learning.

Theorem 9.

(1) There is an indexable class C ∈ Consv ∗Txt such that, for all class preserving

hypothesis spaces H for C, there is no IIM M that Consv ∗TxtH–learns C.

(2) There is an indexable class C ∈ Sdr ∗Txt such that, for all class preserving hy-

pothesis spaces H for C, there is no IIM M that Sdr ∗TxtH–learns C.

Proof. We present a class C ∈ IC that simultaneously witnesses (1) and (2). For

this purpose, let (Mj)j∈N be an effective enumeration of all IIMs. Without loss of

14 Steffen Lange, Gunter Grieser and Thomas Zeugmann

generality we may assume that each Mj is total, i.e., Mj, when fed any finite sequence

of elements from X , outputs a number. Moreover, let X = {b, d}∗.

The underlying idea is as follows: Given any j ∈ N, we define a particular indexable

class Cj such that Mj either does not witness Cj ∈ Lim∗Txt or Mj is not conservative

(set-driven) provided it uses any class preserving hypothesis space for C =
⋃

j∈N Cj.

For showing that Mj violates the constraints a conservative (set-driven) IIM has to

fulfill some a priori knowledge about the semantics of Mj’s hypotheses is required.

In order to provide this knowledge we choose the following approach.

Let (ϕj)j∈N be any acceptable programming system of all partial recursive predi-

cates and let (Φj)j∈N be any fixed associated complexity measure (cf. Blum [6]). Let

(wj)j∈N be the lexicographically ordered enumeration of all elements in the learning

domain X . For every j ∈ N, let c(ϕj) = {wm | m ∈ N, ϕj(m) ↓, ϕj(m) = 1}. Then,

we use H = (c(ϕj))j∈N as a universal hypothesis space, i.e., if any of the enumerated

IIMs outputs a hypothesis, say k, then we interpret it to mean that the IIM is guessing

the concept c(ϕk). The following lemma guarantees that this approach is successful.

Lemma 1. Let C ′ be any indexable class over the learning domain X , let H′ = (h′j)j∈N

be a hypothesis space, and let M ′ be any total IIM that Lim∗TxtH′–identifies C ′. Then,

there exists an IIM M which Lim∗TxtH–identifies C ′.

For all j, m ∈ N we define pj(m) = 1 iff wm ∈ h′j. Since membership is uniformly

decidable in H′, (pj)j∈N is an effective enumeration of recursive predicates. By the

choice of (ϕj)j∈N, there exists a recursive compiler f such that, for all j ∈ N, pj = ϕf(j).

Given this compiler f , one can easily define an IIM M which Lim∗TxtH–identifies C ′.
So, let c ∈ C ′, t ∈ text(c), and y ∈ N.

IIM M : “On input ty proceed as follows:

Determine j = M ′(ty) and output f(j).”

Obviously, M learns C ′ as required. Note that our transformation guarantees any

additional constraint met by M ′ is satisfied by M , too. In particular, if M ′ is conser-

vative (set-driven), then M is also conservative (set-driven). Moreover, if H′ is a class

preserving hypothesis space for C, then M outputs exclusively indices for concepts

belonging to C. Thus, Lemma 1 is proved.

So, let j ∈ N. As a rule, Cj exclusively contains at most two different concepts c

and c′, where c is an infinite concept and c′ is a finite one. In order to answer the

question how to define c and c′, the following procedure is used.

Subsequently, we use the following shorthand. For all m, j ∈ N, we let c(ϕj)
+
m =

{wn | n ≤ m, Φj(n) ≤ m, ϕj(n) = 1}. Note that, by the properties of a complexity

measure, the set c(ϕj)
+
m is recursive in m and j.

Stage 0.

Set c = {bjdz | z ∈ N}, σ = σ′ = bjd0, and w = bjd. Goto Stage 1.

Learning Approximations of Recursive Concepts 15

Stage k + 1.

Set σ′ = σ′ � bjdk+1. If Mj(σ) 6= Mj(σ
′), goto (A). Otherwise, goto (B).

(A) Set w = bjdk+2, σ = σ′, and goto Stage k + 2.

(B) Let z = M(σ). Test whether or not w ∈ c(ϕz)
+
k+1. If it is, set c′ =

content(σ) and finish the definition of Cj. Otherwise, goto Stage k + 2.

One easily sees that Cj is an indexable class. We set C =
⋃

j∈N Cj and claim that C
witnesses Assertions (1) and (2) above.

By Theorem 4 and Corollary 8, it suffices to show that C ∈ Lim∗Txt . However,

we even show that C is LimTxt–identifiable. The desired IIM M works as follows.

On input ty, M determines the unique j ∈ N such that ty ∈ Text(Cj). Now, M uses

y steps of computation to simulate the procedure defined above in order to decide

whether or not Cj contains a finite concept c′. If y steps of computation do not suffice

for making this decision, M guesses the infinite concept c ∈ Cj. If M has verified that

there is a finite concept c′ ∈ Cj, it tests whether or not content(ty) = c′. In case it is,

M guesses c′; otherwise, M guesses c. Obviously, M learns as required, and thus we

are done.

Next, we complete the proof of (1). Suppose that there are a class preserving hy-

pothesis space H′ for C and a conservative IIM M ′ that Lim∗TxtH′–learns C. Without

loss of generality, we assume that M ′ is total. By Lemma 1, there is a conservative

IIM M that Lim∗TxtH–learns C and that outputs exclusively indices for concepts be-

longing to C. Now, let j ∈ N be fixed such that Mj = M . We claim that M cannot

learn the concepts in Cj as required.

Let c = {bjdz | z ∈ N} and let tc be the canonical text for c. We distinguish two

cases.

Case 1. The construction of Cj does not terminate.

Clearly, in case that M , when fed tc, changes its mind infinitely often, it cannot

learn c. Hence, there is a least y such that, for all y′ ≥ y, M(tcy) = M(tcy′). Let z =

M(tcy). Since the construction of Cj does not terminate, we know that bjdy+1 /∈ c(ϕz).

Since, in addition, c(ϕz) ∈ C, we may conclude that c(ϕz) 6=∗ c, and therefore M fails

to learn c from its canonical text.

Case 2. The construction of Cj terminates.

Hence, Cj contains a finite concept c′. Let c′ = {bjd0, . . . , bjdy}. By construction,

we know that, for z = M(tcy), it has been verified that bjdy+1 ∈ c(ϕz). Moreover,

since c(ϕz) ∈ C, we obtain c(ϕz) = c. By definition, c′ ⊆ c. Since M is conservative,

it converges to z when fed the text t′ = tcy � bjd0, bjd0, . . . for c′. But c 6=∗ c′, and thus

M cannot learn c′, a contradiction.

Finally, the same argumentation applies mutatis mutandis to complete the verifi-

cation of (2). Only the following minor modification is necessary. In Case 2, one has

to stress the argument that c′ = content(tcy) to show that M converges to z when fed

16 Steffen Lange, Gunter Grieser and Thomas Zeugmann

the text t′ = tcy � bjb0, bjd0, . . . for c′ provided that M is set-driven. We omit further

details. 2

For anomaly-free learning, the analogue of Theorem 9 holds as well (cf. Lange and

Zeugmann [15]).

Next, we study behaviorally correct identification. As we shall see, finite tell-tale

sets form a conceptual basis that is also well-suited to characterize the collection of

all Bc∗Txt–identifiable indexable classes. Now, the existence of the corresponding

tell-tale sets is already sufficient.

Theorem 10. For all C ∈ IC: C ∈ Bc∗Txt iff there is an indexing (cj)j∈N of C and

a family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,

(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =∗ cj.

Proof. Necessity. Let H be a hypothesis space and let M be an IIM that Bc∗TxtH–

identifies C. Moreover, let (cj)j∈N be an indexing of C. Let j ∈ N. Since M Bc∗TxtH–

identifies cj, there is some finite sequence σ ∈ SegText(cj) such that, for all finite

sequences τ ∈ SegText(cj) and all k ∈ N, if k = M(σ � τ), then hk =∗ cj. We claim

that Tj = content(σ) will do. Suppose to the contrary that there is a k ∈ N such

that Tj ⊆ ck, ck ⊂ cj, and ck 6=∗ cj. Due to the choice of σ and since ck ⊂ cj, one

directly sees that M fails to learn ck on each of its texts having the initial segment σ,

a contradiction.

Sufficiency. First, we define an appropriate hypothesis space H = (h〈j,k〉)j,k∈N. Let

(Fj)j∈N be an effective enumeration of all finite subsets of X and let (wj)j∈N be the

lexicographically ordered enumeration of all elements in X . For the sake of readability,

we subsequently use the following notions and notations.

First, for all c ⊆ X and all z ∈ N, we let cz = {wr | r ≤ z, wr ∈ c}. Second, for

all j, k, z ∈ N, we let S(j,k,z) be the set of all indices r ≤ k that meets (i) Fj ⊆ cr and

(ii), for all r′ < r with cr′ ⊇ Fj, cz
r ⊆ cz

r′ .

Now, we define the required hypothesis space H. Let j, k ∈ N. We define the

characteristic function of h〈j,k〉 as follows. If S(j,k,z) = ∅, we set h〈j,k〉(wz) = −.

Otherwise, i.e., S(j,k,z) 6= ∅, we let n = max{r | r ∈ S(j,k,z)} and set h〈j,k〉(wz) = cn(wz).

Since membership is uniformly decidable in (cj)j∈N, we know that H is an admis-

sible hypothesis space.

The desired IIM M is defined as follows. Let c ∈ C, t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty proceed as follows:

Determine j ∈ N with Fj = content(ty) and output 〈j, y〉.”

Learning Approximations of Recursive Concepts 17

We claim that M Bc∗TxtH–identifies c.

Let m = min{r | cr = c}. Since t ∈ Text(c), there is a least y′ ≥ m such that, for

all k′ < m, content(ty′) ⊆ ck′ implies ck′ ⊇ cm. By assumption, there is some finite

tell-tale set Tm for c = cm. Again, since t ∈ Text(c), there is a least y′′ ≥ y′ such that

Tm ⊆ content(ty′′). Now, fix any y ≥ y′′ and consider 〈j, y〉 = M(ty). We claim that

h〈j,y〉 =∗ c. This can be seen as follows.

Let z′ ∈ N. By the choice of y′, m ∈ S(j,y,z′). Moreover, S(j,y,z′) is finite and

S(j,y,z′) ⊇ S(j,y,z′+1). Hence, there is some n ≥ m such that, for almost all z, n =

max{r | r ∈ S(j,y,z)}. By definition of H, we know that h〈j,y〉 =∗ cn. Since, for all

z ∈ N, m, n ∈ S(j,y,z) and since n ≥ m, we conclude cm ⊇ cn. By H’s definition, we

have content(ty) ⊆ cn, and thus, by the choice of y′′, Tm ⊆ cn. Hence, Condition (2)

guarantees that cn =∗ c, and therefore h〈j,y〉 =∗ c. 2

Note that Baliga et al. [3] have been shown recently that the same characterizing

conditions as in Theorem 10 completely describe the collection of all indexable classes

that are Bc∗Txt–learnable with respect to arbitrary hypothesis spaces2. Hence, our

result refines theirs by showing that, in order to Bc∗Txt–identify an indexable class,

it is always possible to select a hypothesis space with uniformly decidable member-

ship. However, as we see next, it is inevitable to select the actual hypothesis space

appropriately.

Theorem 11. There is an indexable class C ∈ Bc∗Txt such that, for all class pre-

serving hypothesis spaces H for C, there is no IIM M that Bc∗TxtH–learns C.

Proof. The required class C ∈ IC is defined as follows. Let (Mj)j∈N be an effective

enumeration of all IIMs. Without loss of generality we assume that each Mj is total,

i.e., Mj, when fed any finite sequence σ ∈ SegText(X), outputs a number. Moreover,

let X = {b, d}∗.

The proof idea is as follows. For any j ∈ N, we define a class Cj ∈ IC such that Mj

fails to Bc∗Txt–identify Cj for every class preserving hypothesis space for C =
⋃

j∈N Cj.

Some a priory knowledge about Mj’s hypotheses is necessary. For getting it, we use

the same approach as in the proof of Theorem 9.

Fix an acceptable programming system (ϕj)j∈N and an associated complexity mea-

sure (Φj)j∈N. Let (wj)j∈N be the lexicographically ordered enumeration of all elements

in X , and let c(ϕj) = {wm | m ∈ N, ϕj(m) ↓, ϕj(m) = 1} for all j ∈ N. Then, we use

H = (c(ϕj))j∈N as a universal hypothesis space, i.e., if any of the enumerated IIMs

outputs a hypothesis, say k, then we interpret it to mean that the IIM is guessing the

concept c(ϕk).

For all j ∈ N, the definition of Cj is performed in stages. Furthermore, for all

m, j ∈ N, we set c(ϕj)
+
m = {wn | n ≤ m, Φj(n) ≤ m, ϕj(n) = 1} and c(ϕj)

−
m = {wn |

n ≤ m, Φj(n) ≤ m, ϕj(n) = 0}. Again, by the properties of a complexity measure,

the sets c(ϕj)
+
m and c(ϕj)

−
m are recursive in m and j.

2That means, hypothesis spaces that do not necessarily admit a decidable membership problem.

18 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Stage 0.

Define c0 by setting c0 = {bjdz | z ∈ N}. Furthermore, set σ = bjd0, set max = 0

and goto Stage 1.

Stage k + 1.

Set m = 0 and execute Instruction (A).

(A) For all y ≤ m, execute the test (α).

(α) Set σy = σ � bjdmax+0, . . . , bjdmax+y and determine ry = Mj(σy). Test

whether or not bjdmax+1 ∈ c(ϕry)
+
m.

In case there is some y passing this test, fix the least one, say y∗, set

max = max +y∗, and execute Instruction (B).

Otherwise, set m = m + 1 and execute Instruction (A) again.

(B) Start the definition of ck+1 and set ck+1 = {bjdz | z ≤ max}. Set n = 0 and

execute Instruction (C).

(C) For all ` ≤ n, execute the following test (β).

(β) Set σ′` = σy∗ � bjd0, . . . , bjd0︸ ︷︷ ︸
`−times

and determine r′` = Mj(σ
′
`). Test whether

there is a z ≤ max +n such that bjdz ∈ c(ϕr′`
)−max+n.

If no ` passes this test, set n = n + 1, and execute Instruction (C) again.

Otherwise, fix the least ` that passes this test. Complete the definition of

ck+1 by setting ck+1 = ck+1 ∪ {b〈k,n〉}. Set σ = σ′`, and goto Stage k + 2.

One easily sees that Cj constitutes an indexable class. We let C =
⋃

j∈N Cj and claim

that C possesses the above property.

By applying Theorem 10, one easily verifies that C ∈ Bc∗Txt . To see this, let j ∈ N.

For all finite concepts ci ∈ Cj, we let Tci
= ci. We distinguish the following cases.

First, assume that Cj contains finitely many concepts, say c0, . . . , ck. For the infinite

concept c0, we let Tc0 = {bjdm}, where m = max{z | bjdz ∈ ck}+ 1. Second, consider

the case that Cj contains infinitely many concepts. Then, Tc0 = {bjd0} obviously

suffices.

Next, we show that, for all class preserving hypothesis spaces H′, there is no IIM

that Bc∗TxtH′-learns C. Suppose to the contrary that there are a class preserving

hypothesis space H′ = (h′j)j∈N and an IIM M ′ that Bc∗TxtH′–identifies C. Without

loss of generality we may assume that M ′ is total. Applying similar arguments as

in the proof of Lemma 1, it can be shown that there is an IIM M that Bc∗TxtH–

identifies C and that outputs exclusively indices for concepts belonging C. Now, let

j ∈ N be fixed such that Mj = M . We claim that M cannot learn all concepts in Cj.

Case 1. Cj contains infinitely many concepts.

Note that σ tends to become a text for c0 ∈ Cj. Moreover, in every Stage k

with k ≥ 1, it has been verified that there exists some yk such that, for rk = M(σyk
),

Learning Approximations of Recursive Concepts 19

c(ϕrk
) 6= c0 (cf. Instruction (C)). Moreover, we know that c(ϕrk

) ∈ C. The latter yields

c(ϕrk
) 6=∗ c0. By construction, M , when fed σ, guesses infinitely often a concept that

is not a finite variant of c0, and thus it fails to learn c0 on σ, a contradiction.

Case 2. Cj contains finitely many concepts.

First, consider the case that Cj contains only the infinite concept c0. Hence, while

executing Instruction (A) in Stage 1, a text t for c0 is formed on which M almost

always guesses a concept that is not a finite variant of c0. To see this, note that,

for all but finitely many r which M outputs when fed t, it must be the case that

bjd1 /∈ c(ϕr). Since c(ϕr) ∈ C, we may conclude that c(ϕr) 6=∗ c0, and thus M cannot

learn c0 on t.

Second, let c1, . . . , ck be the finite concepts belonging to Cj. Now, assume that

Stage k does not terminate. Then, while executing Instruction (C) in Stage k, a text

t for ck is formed on which M almost always guesses a concept that is not a finite

variant of ck. To see this, note that, for all but finitely many r′ which M outputs when

fed t, c0 ⊆ c(ϕr′) must be the case. Moreover, c(ϕr′) ∈ C, and therefore c(ϕr′) 6=∗ ck.

Hence, M fails to learn ck on t, a contradiction.

Finally, consider the case that Stage k + 1 does not terminate. Hence, while

executing Instruction (A) in Stage k + 1, a text t for c0 is formed on which M almost

always guesses a concept that is not a finite variant of c0. To see this, note that,

for all but finitely many r which M outputs when fed t, it must be the case that

bjdm+1 /∈ c(ϕr), where m = max{z | bjdz ∈ ck}. SinceH′ is class preserving hypothesis

space, we have c(ϕr) ∈ C. This again yields c(ϕr) 6=∗ c0, contradicting the assumption

that M learns c0 on every text for it. 2

In contrast, since BcTxt = LimTxt , it can easily be shown that BcTxt is invariant

to the choice of the hypothesis space (cf. Lange and Zeugmann [15], for the relevant

details). To be complete, note that it is folklore that there are indexable classes which

are not Bc∗Txt-identifiable.

Proposition 3. Bc∗Txt ⊂ IC.

3.2. The case of an a priori bounded number of anomalies

Next, we turn our attention to the case that the number of allowed anomalies is a

priori bounded. For learning in the limit, the situation remains unchanged.

Proposition 4 (Tabe and Zeugmann [18]). For all C ∈ IC and all a ∈ N:

C ∈ LimaTxt iff there is an indexing (cj)j∈N of C and a recursively enumerable family

(Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,

(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =a cj.

20 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Surprisingly, the situation changes already, if finite inference is considered. In order

to design powerful finite learners it is inevitable to use hypothesis spaces that contain

concepts that are not subject to learning.

Theorem 12. For all a ∈ N+ there is an indexable class C ′ ∈ FinaTxt such that,

for all class preserving hypothesis spaces H for C ′, there is no IIM M that FinaTxtH–

learns C ′.

Proof. We consider the case of a = 1, only. The adaptation to the general case is

obvious. For all k ∈ N, we set ck = {b}∗ \ {bk}. Let C be the collection of all concepts

ck. One the one hand, one immediately sees that C ∈ Fin1Txt . On the other hand,

since, for all distinctive concepts c, c′ ∈ C, c 6=1 c′, it is not hard to verify that there

is no IIM that Fin1Txt-identifies C and that outputs exclusively indices for concepts

in C. We omit the details. 2

As a kind of side-effect, one obtains the following characterization for finite infer-

ence with an a priori bounded number of anomalies.

Theorem 13. For all C ∈ IC and all a ∈ N: C ∈ FinaTxt iff there is a hypothesis

space H = (hj)j∈N and a recursively generable family (Tj)j∈N of finite sets such that:

(1) for all j ∈ N, Tj ⊆ hj,

(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c,

(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c, then c =a hj.

Proof. Necessity. Assume that a hypothesis space H′ = (h′j)j∈N and an IIM M that

FinaInf H′–learns C are given. Without loss of generality we may assume that M is a

consistent IIM. Moreover, let (cj)j∈N be any indexing of C.

We define the hypothesis space H = (hj)j∈N and the family (Tj)j∈N as follows: Let

j ∈ N and let t be the canonical text of cj. Since M finitely infers cj, there exists a least

y ∈ N such that M(ty) = m for some m ∈ N. We set hj = h′m and Tj = content(ty).

We have to show that H = (hj)j∈N and (Tj)j∈N fulfill the announced properties. By

construction, (2) is trivially fulfilled. Since M is a consistent IIM, we obtain (1), as

well. Next, we show (3). Suppose j ∈ N and c ∈ C such that Tj ⊆ c. By construction,

there is an initial segment of cj’s canonical text tcj , say t
cj
y , such that content(t

cj
y) = Tj

and M(t
cj
y) = m. Moreover, since M finitely learns cj, h′m =a cj. Since Tj ⊆ c, t

cj
y is

also an initial segment of some text t′ for c. Taking into account that M finitely infers

c when fed t′ and that M(t′y) = m, we obtain h′m =a c. Since hj = h′m, this gives us

hj =a c.

Sufficiency. Again, let a ∈ N. It suffices to prove that there is an IIM M that

FinaTxtH–identifies C. So, let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:

If y = 0 or M(ty−1) =?, goto (A). Otherwise, output j = M(ty−1).

Learning Approximations of Recursive Concepts 21

(A) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty). In

case there exists a j fulfilling the test, output the minimal one. Otherwise,

output “?.”

One directly sees that M learns as required. 2

As we shall see next, when behaviorally correct learning, conservative inference,

and set-driven learning are considered, the overall picture changes, if there is an a

priori fixed bound on the number of allowed anomalies.

On the one hand, Case and Lynes’ [7] result that, for all a ∈ N, Lim2aTxt ⊆
BcaTxt easily translates into our setting of learning indexable classes. Surprisingly,

the opposite is also true, i.e., every IIM that BcaTxt–identifies a target indexable class

can be simulated by a learner that Lim2aTxt–identifies the same class, as expressed

by the following theorem.

Theorem 14. For all a ∈ N: BcaTxt = Lim2aTxt.

Proof. Let a ∈ N. As mentioned above, Lim2aTxt ⊆ BcaTxt can be shown by using

the ideas from Case and Lynes [7] (see also Jain et al. [12]).

Next, we verify that BcaTxt ⊆ Lim2aTxt . Let C ∈ BcaTxt , let H be a hypothesis

space, and let M be an IIM that BcaTxtH–identifies C. Without loss of generality

assume that card(C) ≥ 2. Since membership is uniformly decidable in H, the set

{(j, k) | hj 6=2a hk} is recursively enumerable. Hence, by the choice of C, there is a

total recursive function f : N → N2 such that {f(n) | n ∈ N} = {(j, k) | hj 6=2a hk}.

The required IIM M ′ also uses the hypothesis space H. Let c ∈ C, t ∈ Text(c),

and y ∈ N.

IIM M ′: “On input ty proceed as follows:

If y = 0, set z = 0, determine j0 = M(t0), and output j0. Otherwise, goto (A).

(A) Determine j = M ′(ty−1). For all s = z, . . . , y, determine js = M(ts), and

test whether or not (j, js) ∈ {f(n) | n ≤ y}. In case there is no js passing

this test, then output j. Otherwise, set z = y and output jy.”

Since M BcaTxtH–identifies c, there is has to be a least y such that, for all y′, y′′ ≥ y,

hM(ty′)
=a c and hM(ty′)

=2a hM(ty′′)
. Consequently, M ′, when fed t, converges to a

hypothesis j that meets hj =2a c. 2

Applying Proposition 4, we may conclude:

Corollary 15. For all C ∈ IC and all a ∈ N: C ∈ BcaTxt iff there is an indexing

(cj)j∈N of C and a recursively enumerable family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,

(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =2a cj.

22 Steffen Lange, Gunter Grieser and Thomas Zeugmann

The latter corollary nicely contrasts the results in Baliga et al. [3]. When arbitrary

hypothesis spaces are admissible (see above), there is no need to add any recursive

component, i.e., the existence of the corresponding tell-tale sets is again sufficient.

Moreover, Theorem 14 can be used to show that Lim∗Txt is an upper bound for

behaviorally correct inference with an a priori bounded number of anomalies.

Theorem 16.
⋃

a∈N LimaTxt =
⋃

a∈N BcaTxt ⊂ Lim∗Txt .

Proof.
⋃

a∈N LimaTxt =
⋃

a∈N BcaTxt follows directly via Theorem 14. Moreover,

by definition,
⋃

a∈N LimaTxt ⊆ Lim∗Txt . Hence, it remains to provide an indexable

class C ∈ Lim∗Txt such that, for all a ∈ N, C /∈ LimaTxt .

We let Ccof be the collection of all co-finite concepts c with c ⊆ {b}∗. On the

one hand, one easily sees that Ccof is even Fin∗Txt–identifiable. On the other hand,

suppose that there is some a ∈ N such that Ccof ∈ LimaTxt . By Theorem 4, for

c = {b}∗, there must be a finite set Tc ⊆ c such that, for all c′ ∈ Ccof , Tc ⊆ c′ ⊆ c

implies c′ =a c. Clearly, such a finite set cannot exist. 2

Next, we deal with conservative inference and set-driven learning.

Theorem 17. For all a ∈ N: LimaTxt ⊂ Consva+1Txt ⊂ Lima+1Txt.

Proof. Let a ∈ N. The same idea as in the demonstration of Theorem 4 applies

to show that LimaTxt ⊆ Consva+1Txt . Next, Consva+1Txt \ LimaTxt 6= ∅ is a direct

consequence of Theorem 14 and of Theorem 24 below. Furthermore, Consva+1Txt ⊆
Lima+1Txt follows directly from the definitions.

It remains to separate Lima+1Txt and Consva+1Txt . For this purpose, let (Mj)j∈N

be an effective enumeration of all IIMs. Without loss of generality we may assume

that each Mj is total, i.e., Mj, when fed any finite sequence of elements from X ,

outputs a hypothesis. Moreover, let X = {b, d}∗.
Conceptually, the underlying idea is as follows: Given any j ∈ N, we define a

particular indexable class Cj such that Mj either does not witness C ∈ Lima+1Txt or

Mj is not conservative. Obviously, in order to show that Mj violates the constraints

a conservative IIM has to fulfill some a priori knowledge about the semantics of

Mj’s hypotheses is required. We provide this knowledge by using the same universal

hypothesis space H = (c(ϕj))j∈N as in the demonstration of Theorems 9 and 11.

Let (σk)k∈N be any effective enumeration of all finite sequences of elements from

{bjdz | z ∈ N}. Moreover, for all m, j ∈ N, the concepts c(ϕj)
+
m and c(ϕj)

−
m are defined

analogously as in the proof of Theorem 11. Again, by the properties of a complexity

measure, both sets are recursive in m and j.

So, let j ∈ N. As a rule, the required indexable class Cj contains all infinite

concepts c ⊆ {bjdz | z ∈ N} that meet card({bjdz | z ∈ N}\c) ≤ a+1. In addition, Cj

may contain a finite concept c′ ⊆ {bjdz | z ∈ N}. In order to answer the question of

whether or not a finite concept c′ belongs to Cj and of how to define c′, the following

procedure is used.

Initially, we set k = 0 and P−1 = ∅.

Learning Approximations of Recursive Concepts 23

Stage k.

Determine z = Mj(σk) and goto (A).

(A) Determine the least m ∈ N such that (i) or (ii) is fulfilled, where

(i) content(σk) ⊆ c(ϕz)
+
m.

(ii) content(σk) ∩ c(ϕz)
−
m 6= ∅.

If (i) happens, set Pk = Pk−1∪{k}. If (ii) happens, set Pk = Pk−1. Execute

Instruction (B).

(B) For all r ∈ Pk, execute (β).

(β) Determine zr = M(σr) and Sr = {bjdn | bjdn ∈ c(ϕzr)
+
k }. Test whether

or not card(S \ content(σr)) ≥ a + 2.

In case an r has been found, fix the least one, say r′, set c′ = content(σr′),

and finish the definition of c′. Otherwise, goto Stage k + 1.

After a bit of reflection, one sees that Cj constitutes an indexable class. We let

C =
⋃

j∈N Cj and claim that C separates Lima+1Txt and Consva+1Txt .

Claim 1. C /∈ Consva+1Txt .

Suppose the contrary, i.e., there are a hypothesis space H′ = (h′j)j∈N and a total

IIM M ′ that Consva+1TxtH′–identifies C. By an argumentation similar to the one

proving Lemma 1, there is a total IIM M that Consva+1TxtH–identifies C. Let j ∈ N
with Mj = M . We show that M fails to Consva+1TxtH–identify Cj.

First, we show that Cj contains a finite concept. Suppose the converse. Since M

exclusively outputs indices of recursive concepts, we know that every stage terminates.

Let c = {bjdz | z ∈ N}. Since M learns Cj there has to be a finite sequence σk ∈
SegText(c) such that, for z = M(σk), c(ϕz) =a c as well as, for all finite sequences τ ∈
SegText(c), j = M(σk�τ). Obviously, c(ϕz) =a+1 c implies card(c(ϕz)\content(σk)) ≥
a + 2. Moreover, it can be shown that content(σk) ⊆ c(ϕz), and therefore k ∈ Pk.

To see this, suppose the contrary, i.e., content(σk) \ c(ϕz) 6= ∅. Let x ∈ content(σk)

such that x /∈ c(ϕz). Moreover, let S ⊆ c such that card(S) = a + 1, S ⊆ c(ϕz), and

S ∩ content(σk) = ∅. Since c(ϕz) =a+1 c, such set S must exist. Now, let c′ = c \ S

and consider M when fed any text t for c′ that begins with σk. Since c′ ⊆ c and by the

properties of σk, M converges on t to z. Because of S ⊆ c(ϕz)\c′ and x ∈ c′\c(ϕz), we

obtain c(ϕz) 6=a+1 c′, and therefore M fails to learn c′ ∈ C, a contradiction. Finally,

by construction, there is some k′ ≥ k such that, for S = {bjdn | bjdn ∈ c(ϕz)
+
k′}, it

holds card(S \ content(σk)) ≥ a+2. Thus, in Stage k′ at the latest, the finite concept

c′ is defined.

Second, we show that M fails to learn c′. Let c′ be defined in Stage k′′. Let

r be the least index in Pk′′ such that, for zr = M(σr), it has been verified that

card(c(ϕzr) \ content(σr)) ≥ a + 2. By construction, c′ = content(σr). Now, since M

is a conservative IIM and since content(σr) ⊆ c(ϕzr), M must converge to zr when

24 Steffen Lange, Gunter Grieser and Thomas Zeugmann

fed any text t for c′ that has the initial segment σr. Hence, M cannot learn c′, a

contradiction, and Claim 1 follows.

Claim 2. C ∈ Lima+1Txt .

The desired IIM M works as follows. On input ty, M determines the unique j ∈ N
such that content(ty) ⊆ {bjdz | z ∈ N}. Now, M uses y steps of computation to

simulate the procedure defined above in order to decide whether Cj contains a finite

concept. If y steps of computation do not suffice to make this decision, M guesses

{bjdz | z ∈ N}. If it has been verified that there is a finite concept c′ ∈ Cj, M tests

whether or not content(ty) = c′. In case it is, M guesses c′; otherwise, M guesses

{bjdz | z ∈ N}. Obviously, M learns as required, and thus we are done. 2

In contrast to Theorem 7, it is no longer possible to replace a conservative learner by

an equally powerful IIM that is both conservative and consistent. To our knowledge,

this is the first results that proves that consistency is a severe restriction when learning

of indexable classes is considered.

Theorem 18. LimTxt \
⋃

a∈N c-ConsvaTxt 6= ∅.

Proof. The required class Cconsv is defined as follows. For all k ∈ N, let ck =

{bkdz | z ∈ N}. Moreover, for all k ∈ N with ϕk(k) ↓ and all j ≤ Φk(k), let

ck,j = {bkdz | z ≤ j}. Finally, let Cconsv be the collection of all those concepts ck and

ck,j.

It is well-known that Cconsv ∈ LimTxt (cf. Lange and Zeugmann [15]). Let a ∈ N.

Since the halting problem is undecidable, Cconsv /∈ c-ConsvaTxt follows by contrapo-

sition of the following claim.

Claim. If there is a consistent IIM that witnesses Cconsv ∈ ConsvaTxt, then one

can effectively construct an algorithm deciding, for all k ∈ N, whether or not ϕk(k) ↓.

Suppose the contrary, i.e., there are a hypothesis space H = (hj)j∈N and a consis-

tent IIM M that ConsvaTxtH–identifies Cconsv . We define an algorithm A that solves

the halting problem.

Algorithm A: On input k execute (A) and (B):

(A) For z = 0, 1, . . ., execute (α1) until (α2) happens.

(α1) Set tz = bkd0, bkd1, . . . , bkdz and Sz = {bkdr | z + 1 ≤ r ≤ 2z}.
Determine jz = M(tz).

(α2) card(Sz ∩ hjz) ≥ a + 1 is verified.

(B) Test whether or not Φk(k) ≤ z. In case it is, output “ϕk(k) ↓.” Otherwise,

output “ϕk(k) ↑.”

The verification of A’s correctness is as follows. Let k ∈ N. Since M learns ck,

there has to be some y ∈ N such that, for jy = M(ty), it must be the case that

hjy =a ck. Hence, (α2) must happen, and thus algorithm A terminates on input k.

Learning Approximations of Recursive Concepts 25

Now, suppose to the contrary that ϕk(k) is defined, but A outputs “ϕk(k) ↑.” Let z

be fixed such that, for jz = M(tz), card(Sz∩hjz) ≥ a+1. By construction, Φk(k) > z,

and therefore ck,z = {bkdr | r ≤ z} belongs to C. Moreover, by construction, the

consistent IIM M , when successively fed the text t = bkd0, bkd1, . . . , bkdz�bkd0, bkd0, . . .

for ck,z, has output a number jz such that ck,z ⊆ hjz and hjz 6=a ck,z. Since M is

conservative, it converges to jz on t, and thus it fails to ConsvaTxtH–identify ck,z. 2

Hence, we may directly conclude:

Corollary 19. For all a ∈ N+: c-ConsvaTxt ⊂ ConsvaTxt.

Note that c-ConsvTxt = ConsvTxt (cf., e.g., Lange and Zeugmann [20]).

In contrast, one immediately sees that set-driven learning fits in the usual pattern

that consistency does not limit the learning capabilities when learning of indexable

classes is concerned.

Proposition 5. For all a ∈ N: c-SdraTxt = SdraTxt.

Comparing Corollary 19 and Proposition 5, one may readily expect that the learn-

ing power of conservative learners and set-driven IIMs does not coincide, if the final

hypothesis is allowed to have an a priori bounded number of anomalies. This is indeed

the case as our next theorem shows.

Theorem 20. Consv 1Txt \
⋃

a∈N SdraTxt 6= ∅.

Proof. We claim that the indexable class Cconsv (cf. the proof of Theorem 18)

witnesses the stated separation. First, by Theorem 17, Cconsv ∈ LimTxt implies

Cconsv ∈ Consv 1Txt . Second, let a ∈ N. Now, Cconsv /∈ SdraTxt can easily be shown

by reducing the halting problem to the learning problem on hand. It is not hard to

see that the algorithm A defined in the demonstration of Theorem 18 can be used to

establish the announced reduction, too. 2

Combining these insights with the fact that SdraTxt ⊆ ConsvaTxt for all a ∈ N+

(cf. Theorem 5), one arrives at the following result.

Corollary 21. For all a ∈ N+: SdraTxt ⊂ ConsvaTxt.

As we shall see, set-driven learners are exactly as powerful as learning machines

that are both conservative and consistent. To prove this equivalence, we use the

following characterization c-ConsvaTxt .

Theorem 22. For all C ∈ IC and all a ∈ N: C ∈ c-ConsvaTxt iff there are a

hypothesis space H = (hj)j∈N and a recursively generable family (Tj)j∈N of finite sets

such that

(1) for all j ∈ N, Tj ⊆ hj,

(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c ⊆ hj,

(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c ⊆ hj, then c =a hj.

26 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Proof. Necessity. Let C ∈ c-ConsvaTxt . Consequently, there are a hypothesis

space Ĥ = (ĥj)j∈N and a consistent IIM M that ConsvaTxt Ĥ–identifies C. Without

loss of generality we may additionally assume that M is total. A hypothesis space

H = (hj)j∈N as well as a family of finite sets (Tj)j∈N can be constructed as follows.

Let (cj)j∈N be any indexing of C. For all c ∈ C, we use tc to denote the canonical

text of c. Now, let r, x ∈ N. Let k = M(tcr
x). Then, we set h〈r,x〉 = ĥk and T〈r,x〉 =

content(tcr
x).

Obviously, (h〈r,x〉)r,x∈N is an indexable family of recursive concepts. Furthermore,

(T〈r,x〉)r,x∈N is recursively generable and all sets T〈r,x〉 are finite.

It remains to show that H = (h〈r,x〉)r,x∈N and (T〈r,x〉)r,x∈N do fulfill the announced

properties. By construction, (1) is obviously satisfied, since M is a consistent IIM.

For the purpose of proving (2), let c ∈ C. We have to show that there is at least

one index j such that Tj ⊆ c ⊆ hj. Let r ∈ N be fixed such that cr = c and let tc be

c’s canonical text. Since M has to infer c from tc, there have to be k, x ∈ N such that

ĥk =a c and, for all y ≥ x, M(tcy) = k. Since M is a consistent IIM, we know that

c ⊆ ĥk. By definition, h〈r,x〉 = ĥk. Hence, T〈r,x〉 = content(tcx) ⊆ c ⊆ h〈r,x〉, and we are

done.

Finally, we prove (3). Suppose to the contrary that there are r, x ∈ N and some

c ∈ C such that T〈r,x〉 ⊆ c ⊆ h〈r,x〉 and h〈r,x〉 6=a c. Let k = M(tcr
x). Since c ⊂ h〈r,x〉 = ĥk

and M learns in a conservative fashion, M converges to k when fed any text t for c

having the initial segment tcr
x . However, because of h〈r,x〉 6=a c, M cannot ConsvaTxt Ĥ–

identify c on t, a contradiction.

Sufficiency. We define a consistent IIM M that ConsvaTxtH–identifies C. So, let

c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “ On input ty proceed as follows:

If y = 0 or M(ty−1) = ?, then goto (B). Otherwise, goto (A).

(A) Let j = M(ty−1). Test whether or not content(ty) ⊆ hj. In case it is,

output j. Otherwise, goto (B).

(B) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty) and

content(ty) ⊆ hj. In case there exists a j fulfilling the test, output the

minimal one. Otherwise, output “?.”

Since all sets Tj are uniformly recursively generable and finite, we see that M is an

IIM. By definition, M is a consistent IIM. Moreover, M changes its mind only in case

it detects an inconsistency in (A). Hence, M learns in a conservative fashion provided

it converges on t to a correct hypothesis.

Claim 1. M converges on t.

Let k = min{z | Tz ⊆ c, c ⊆ hz, hz =a c}. Consider T0, . . . , Tk. Since t ∈ Text(c),

there must be an y ≥ k such that Tk ⊆ content(ty) ⊆ hk. That means, at least after

Learning Approximations of Recursive Concepts 27

having fed ty to M , the machine M outputs a number. Furthermore, since, for all

y′ ≥ y, Tk ⊆ content(t′y) ⊆ hk, the IIM M never changes its mind to some j > k when

processing any initial segment ty′ . Finally, M changes its mind iff it receives some

string that is misclassified by its current guess. Moreover, since M is consistent, any

hypothesis once rejected is never repeated in some subsequent step. Since at least k

can never be rejected, M has to converge.

Claim 2. If M converges, say to j, then hj =a c.

Suppose the converse, i.e., M converges on t to j and hj 6=a c.

Case 1. c \ hj 6= ∅.

Thus, there is at least one element x ∈ c \ hj that has to appear eventually, i.e.,

x ∈ content(ty) for some y. Thus, content(ty) 6⊆ hj, a contradiction.

Case 2. hj \ c 6= ∅.

Then, we may restrict ourselves to the case c ⊂ hj, since otherwise we are again in

Case 1. Since, for all sufficiently large y, Tj ⊆ content(ty) ⊆ c, we immediately obtain

Tj ⊆ c. By Property (3), we may conclude c =a hj, a contradiction. 2

Theorem 23. For all a ∈ N: c-ConsvaTxt = SdraTxt.

Proof. Let a ∈ N. SdraTxt ⊆ c-ConsvaTxt has already been verified in the demon-

stration of Theorem 5. It remains to show that c-ConsvaTxt ⊆ SdraTxt .

Let C ∈ c-ConsvaTxt . By Theorem 22, there are a hypothesis space H = (hj)j∈N

and a recursively generable family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ hj,

(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c ⊆ hj,

(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c ⊆ hj, then c =a hj.

Furthermore, having a closer look at the demonstration of Theorem 22 one imme-

diately sees that there is an indexing (cj)j∈N of C and a total recursive function f such

that, for all j ∈ N, Tf(j) ⊆ cj, cf(j) ⊆ hj and cf(j) =a hj. We first define a new recur-

sively generable family (T ′
j)j∈N of finite sets. Afterwards, we use the family (T ′

j)j∈N

to create a rearrangement-independent3 IIM M that ConsvaTxtH–identifies C. In a

concluding step, we construct a set-driven learner M ′ which witnesses C ∈ LimaTxt .

We define the new family of finite tell-tale sets as follows. For all j ∈ N, we set

T ′
j =

⋃
n≤j Tn ∩ cf(j). Obviously, (T ′

j)j∈N is also a recursively generable family of finite

sets that fulfills Conditions (1) and (3). Moreover, by the properties of f , Condition

(2) is satisfied as well.

The desired IIM M is defined as follows. Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

3An IIM M is said to be rearrangement independent for C provided that, for all t, t′ ∈ Text(C)
and all y ∈ N, if content(ty) = content(t′y), then M(ty) = M(t′y).

28 Steffen Lange, Gunter Grieser and Thomas Zeugmann

IIM M : “On input ty do the following:

For all k ≤ y, generate T ′
k and test whether or not T ′

k ⊆ content(ty) ⊆ hk. In case

there is a k fulfilling the test, output the minimal one. Otherwise, output “?.”

By definition, M is rearrangement-independent. Moreover, M is consistent.

Claim 1. M is conservative.

Let k, y ∈ N such that M(ty) = k and M(ty+1) 6= M(ty). Now, if M(ty+1) = ?, we

directly obtain content(ty+1) 6⊆ hk. Next, let M(ty+1) = j for some j ∈ N. Again, it

remains to show that content(ty+1) 6⊆ hk.

First, let k < j. Then, by M ’s definition, content(ty+1) 6⊆ hk. Second, let j <

k and suppose that content(ty+1) ⊆ hk. By definition, M has verified that T ′
j ⊆

content(ty+1) ⊆ hj. Moreover, since j < k, since T ′
j ⊆ content(ty+1), and since, by

assumption, content(ty+1) ⊆ hk, we obtain T ′
j ⊆ T ′

k. Finally, by definition of M ,

M(ty) = k implies T ′
k ⊆ content(ty), and thus T ′

j ⊆ content(ty). Because of j < k, we

may conclude that M(ty) = j, contradicting M(ty) = k, and thus Claim 1 is proved.

Claim 2. M identifies c from t.

Let m = min{z | T ′
z ⊆ c, c ⊆ hz, hz =a c}. By Condition (3), we obtain that

c \ hj 6= ∅ for all j < m provided T ′
j ⊆ c. Consequently, every possible candidate

hypothesis j < m must sometimes be abandoned. Thus, M converges to m. This

proves Claim 2.

To sum up, M is rearrangement-independent and ConsvTxtH–identifies C. We

continue by defining a hypothesis space H′ and the required set-driven IIM M ′ such

that M ′ LimTxtH′–identifies C.

Let H′ = (h′j)j∈N be the canonical enumeration of all concepts in C and of all finite

concepts over the underlying learning domain X . Before defining M ′, we introduce

the notion of the repetition free version of a given text t, denoted by rfv(t).

Let t = (xj)j∈N be any text. Initially, we set rfv(t0) = x0 and proceed inductively.

For all y ∈ N, we set rfv(ty+1) = rfv(ty), if xy+1 ∈ content(rfv(ty)). Otherwise, we set

rfv(ty+1) = rfv(ty) � xy+1. Obviously, given any initial segment ty of a text t, one can

effectively compute rfv(ty).

Now, we are ready to define M ′. So, let c ∈ C, t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty do the following:

First, compute rfv(ty). If M(rfv(ty)) = ?, then output the canonical index of

content(ty) in H′. Otherwise, fix j = M(rfv(ty)) and output the canonical index

of hj in H′.”

We show that M ′ learns as required.

Claim 3. M ′ is set-driven.

Let t, t′ ∈ Text(C) and let x, y ∈ N such that content(tx) = content(t′y). By

definition, |rfv(tx)| = |rfv(t′y)|. Therefore, M(rfv(tx)) = M(rfv(t′y)), since M is

rearrangement-independent, and thus M(tx) = M(t′y).

Learning Approximations of Recursive Concepts 29

Claim 4. M ′ identifies c from t.

We distinguish two cases.

Case 1. c is finite.

Then there exists an x ∈ N such that content(ty) = c. On the one hand, if

M(rfv(ty)) = ?, then, by definition, M ′ converges to the canonical index of the finite

concept content(ty) in H′. On the other hand, if M(rfv(ty)) = j, then c ⊆ hj, since

M is consistent. Since M is conservative, it converges to j when fed any text for c

that has the initial segment ty. Hence, hj =a c, and thus M ′ behaves as required.

Case 2. c is infinite.

Since c is infinite, rfv(t) constitutes a text for c. Moreover, M learns c from rfv(t).

Consequently, there have to be y, k ∈ N such that, for all r ∈ N, M(rfv(t)y+r) = k

and hk =a c. Hence, past point y, M ′ always outputs the canonical index of hk in H′,

and thus M ′ infers c. Thus, Claim 4 is proved. 2

Finally, when learning with an a priori bounded number of allowed anomalies

is considered, it can be shown that there is an infinite hierarchy of more and more

powerful set-driven, conservative, limit, and behaviorally correct learners, respectively,

parameterized in the number of allowed anomalies. The following theorem provides

the missing piece to establish the existence of these infinite hierarchies.

Theorem 24. For all a ∈ N: Fin2a+1Txt \ BcaTxt 6= ∅.

Proof. Let a ∈ N. We let Ca be the collection of all infinite concepts c ⊆ {b}∗ that

meet card({b}∗ \ c) ≤ 2a + 1. One the one hand, one easily sees C ∈ Fin2a+1Txt . On

the other hand, suppose that Ca ∈ BcaTxt . Now, by Corollary 15, for c = {b}∗, there

has to be a finite set Tc ⊆ c such that, for all c′ ∈ Ca , Tc ⊆ c′ ⊆ c implies c′ =2a c.

Obviously, such a finite set cannot exist, and thus we are done. 2

We conclude this section by providing, for all a ∈ N, a characterization of the

collection of all ConsvaTxt–identifiable classes.

Theorem 25. Let C be an indexable class and let a ∈ N. Then, C ∈ ConsvaTxt

iff there are a hypothesis space H = (hj)j∈N, a computable relation ≺ over N, and a

recursively generable family (Tj)j∈N of finite sets such that

(1) for all c ∈ C, there is a j such that Tj ⊆ c, and hj =a c,

(2) for all c ∈ C, all k ∈ N, and all finite sets A ⊆ c, if Tk ⊆ c and hk 6=a c, then

there is a j such that k ≺ j, A ⊆ Tj, and hj =a c,

(3) for all c ∈ C, there is no infinite sequence (kr)r∈N such that, for all r ∈ N,

kr ≺ kr+1 and
⋃

r∈N Tkr = c,

(4) for all c ∈ C and all k, j ∈ N, if k ≺ j and Tj ⊆ c, then Tj \ hk 6= ∅.

30 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Proof. Necessity. Let C ∈ ConsvaTxt . Therefore, there are a hypothesis space

Ĥ = (ĥj)j∈N and an IIM M that ConsvaTxt Ĥ–identifies C. Without of loss of general-

ity, we may assume that M is total. First, we construct a hypothesis space H̃ = (h̃j)j∈N

and a recursively generable family (T̃j)j∈N of finite sets. Then, we describe a proce-

dure enumerating a certain subset of H̃ that forms the required hypothesis space H.

Finally, we define the required computable relation ≺.

Let (σj)j∈N be an effective enumeration of all finite, non-null sequences of elements

from the underlying learning domain X such that, for all m, n ∈ N, σm @ σn implies

m < n. Furthermore, for all n, y ∈ N, we set h̃〈n,y〉 = ĥn. The family (T̃〈n,y〉)n,y∈N is

defined as follows. For all n, y ∈ N, we set

T̃〈n,y〉 =

{
content(σy), if M(σy) = n,
∅, otherwise.

Clearly, (T̃〈n,y〉)n,y∈N is a uniformly recursively generable family of finite sets.

Claim. For all c ∈ C, there are n, y ∈ N such that h̃〈n,y〉 =a c and T̃〈n,y〉 6= ∅.

Let tc be the canonical text of c. Since M learns c, there are n, z ∈ N such that

M(tcz) = n and ĥn =a c. Let y ∈ N with σy = tcz. By construction, T̃〈n,y〉 6= ∅ as well

as h̃〈n,y〉 =a c, and thus the claim follows.

We proceed with the definition of the desired hypothesis space H = (hj)j∈N and

the relation ≺. For this purpose, we define a recursive function f as follows. Set

f(0) = k, where k is the least index with T̃k 6= ∅. Note that, by the the claim above,

such an index k must exist. For all j ≥ 1, set

f(j) =

{
j, if T̃j 6= ∅,
f(j − 1), otherwise.

Furthermore, for all j ∈ N, we define hj = h̃f(j) and Tj = T̃f(j). Finally, let k, j ∈ N
and let m, n, y, z ∈ N be the uniquely determined numbers such that f(k) = 〈m, y〉
and f(j) = 〈n, z〉. Then, we let k ≺ j iff m 6= n and σy @ σz.

Clearly, (Tj)j∈N is a uniformly recursively generable family of finite sets and the

relation ≺ is computable. It remains to show that (1) to (4) are fulfilled. Obviously,

(1) is a direct consequence of the claim above.

We next verify (2). Let c ∈ C, let A ⊆ c be any finite set, and let k ∈ N be any

index such that Tk ⊆ c and hk 6=a c. We have to show that there is an index j such

that k ≺ j, A ⊆ Tj, and hj =a c. Due to our construction, we have Tk = T̃f(k) and

hk = h̃f(k). Let m, y ∈ N be the uniquely determined numbers with f(k) = 〈m, y〉.
Then, we know that M(σy) = m and c 6=a ĥm. Moreover, Tk = content(σy) ⊆ c.

Hence, σy is an initial segment of a text for c. Now, let tc be the canonical text of c.

Since A ⊆ c, there exists a b ∈ N such that A ⊆ content(tcb). Thus, there has to be an

r ∈ N such that, for n = M(σy � tcb+r), the condition ĥn =a c is satisfied, since M has

to learn c from every text for it. Furthermore, since σy � tcb+r is a finite sequence, there

Learning Approximations of Recursive Concepts 31

exists an index z with σz = σy�tcb+r. By construction, we get T̃〈n,z〉 = content(σz) 6= ∅,
A ⊆ T̃〈n,z〉, and h̃〈n,z〉 =a c. Thus, there is a number j such that f(j) = 〈n, z〉. Since

σy @ σz and m 6= n, we obtain k ≺ j, and therefore (2) is proved.

We proceed with the demonstration of (3). Looking at the definition of the relation

≺, one sees that k ≺ j implies Tk ⊆ Tj. Suppose there is an infinite sequence (kr)r∈N

such that kr ≺ kr+1 and
⋃

r∈NTkr = c. Since Tkr ⊆ Tkr+1 , in the limit we get a text

t for c on which M changes its mind infinitely often, a contradiction. Hence, (3) is

proved.

Finally, we show (4). Let c ∈ C, and let k, j ∈ N such that k ≺ j and Tj ⊆
c. Furthermore, let m, n, y, z ∈ N be the uniquely determined numbers such that

f(k) = 〈m, y〉 and f(j) = 〈n, z〉. By definition of the relation ≺, we get σy @ σz as

well as m 6= n. Moreover, by the definition of the tell-tale family, M(σy) = m and

M(σz) = n. Since Tj = content(σz) and Tj ⊆ c, we see that σz is an initial segment of

some text t for c on which M successively outputs m and n. Since M is conservative,

we obtain Tj \ ĥm 6= ∅. Finally, by construction, we have hk = h̃〈m,y〉 = ĥm, and thus

Tj \ hk 6= ∅. Hence, (4) follows.

Sufficiency. It suffices to define an IIM M that ConsvaTxtH–identifies C. Let c ∈ C,

let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:

If y = 0 or y > 0 and M(ty−1) = ?, then goto (A). Otherwise, goto (B).

(A) Search for the least k ≤ y such that Tk ⊆ content(ty). In case it is found,

set yk = y and output k. Otherwise, output “?.“

(B) Let k = M(ty−1). Search for the least j ≤ y such that k ≺ j and

content(tyk
) ⊆ Tj ⊆ content(ty). In case such j is found, set yj = y

and output j. Otherwise, output k.”

Since all sets Tj are uniformly recursively generable and finite, and since the relation

≺ is computable, we directly obtain that M is an IIM. Moreover, Condition (1)

guarantees that M outputs at least once a hypothesis. We proceed in showing that

M ConsvaTxtH–identifies c from t.

Claim 1. If M converges, say to k, then hk =a c.

Note that Tk ⊆ c, since otherwise k cannot be any of M ’s guesses. Suppose hk 6=a c.

By (2), there is an index j such that k ≺ j, content(tyk
) ⊆ Tj, and hj =a c. Hence,

there is a y ∈ N with content(tyk
) ⊆ Tj ⊆ content(ty). Thus, M(ty) 6= k, contradicting

the assumption that M converges to k.

Claim 2. M is conservative.

This is an immediate consequence of (4) and the definition of M .

Claim 3. M converges on t.

32 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Observe that M outputs at least once a hypothesis, say k. As long as M does

not find a j such that k ≺ j and content(tyk
) ⊆ Tj ⊆ content(tx), this hypothesis

is repeated. Hence, as long as M finds only finitely many j’s in (B), it converges.

Consequently, if M does not converge, it finds an infinite sequence (kr)r∈N such that

kr ≺ kr+1 for all r ∈ N. But every mind change implies an update of the value

of the variable ykr . Thus, for all z ∈ N, there exist ykr , y ∈ N with content(tz) ⊆
content(tykr

) ⊆ Tkr ⊆ content(ty). Therefore, we immediately obtain
⋃

r∈N Tkr = c, a

contradiction to (3). This proves the claim, and hence the verification of the sufficiency

part is completed. 2

Compared to the learning devices introduced in the other characterization theo-

rems, the IIM defined in the proof of Theorem 25 uses a different technique to detect

that its actual hypothesis may be incorrect. Clearly, no IIM can prove that its actual

guess is really correct, unless it finitely learns. Hence, the machine has to collect

evidence allowing it to decide whether or not it should prefer a new hypothesis in-

stead of maintaining its actual one. The machine defined in the proof of Theorem 25

achieves this goal by using a priori knowledge concerning both the hypothesis space

and the family of tell-tale sets. This a priori knowledge is provided by the computable

relation ≺.

4. Learning from positive and negative data

In this section, we briefly summarize the results that can be obtained when learning

with anomalies from both positive and negative examples is studied.

Let X be the learning domain, let c ⊆ X be a concept, and let i = ((xn, bn))n∈N

be any infinite sequence of elements from X × {+,−} such that content(i) = {xn |
n ∈ N} = X , content+(i) = {xn | n ∈ N, bn = +} = c, and content−(i) = {xn | n ∈
N, bn = −} = X \ c = c. Then, we refer to i as an informant. By Info(c) we denote

the set of all informants for c. Moreover, let i = ((xn, bn))n∈N be an informant and y

be a number. Then, iy denotes the initial segment of i of length y+1. By content(iy),

content+(iy), and content−(iy) we denote the sets {xj | j ≤ y}, {xj | j ≤ y, bj = +},
and {xj | j ≤ y, bj = −}, respectively.

For all a ∈ N ∪ {∗}, the learning models FinaInf , SdraInf , ConsvaInf , LimaInf

and BcaInf are defined analogously as their text counterparts by replacing text by

informant.

First, since, for all C ∈ IC, C ∈ ConsvInf (cf. Gold [11]), we may easily conclude:

Corollary 26.

For all a ∈ N ∪ {∗}: ConsvInf = ConsvaInf = SdraInf = LimaInf = BcaInf .

Next, we study finite learning with anomalies. As in the case of learning from

positive data, there is a difference between finite learning with an a priori bounded

number of allowed anomalies and finite learning with a bounded number of allowed

Learning Approximations of Recursive Concepts 33

anomalies. While the latter is invariant to the choice of the hypothesis space, the

former is not.

Theorem 27. For all C ∈ IC: C ∈ Fin∗Inf iff there is an indexing (cj)j∈N of C and

a recursively generable family (Sj)j∈N of finite sets such that

(1) for all j, k ∈ N, if Sj ∩ ck = Sj ∩ cj, then ck =∗ cj.

Proof. Necessity. Assume that a hypothesis space H = (hj)j∈N and an IIM M that

Fin∗Inf H–learns C are given. Moreover, let (cj)j∈N be any indexing of C. The family

(Sj)j∈N is defined as follows.

Let j ∈ N and let icj be the lexicographically ordered informant of cj. Since M

finitely infers cj, there exists a least y ∈ N such that M(i
cj
y) = m for some m ∈ N.

We set Sj = content(i
cj
y).

We have to show that (Sj)j∈N fulfills Property (1). Suppose j, k ∈ N such that

Sj ∩ ck = Sj ∩ cj. By construction, there is an initial segment of cj’s lexicographically

ordered informant icj , say i
cj
y , such that content(i

cj
y) = Sj and M(i

cj
y) = m. Now, M

finitely learns cj, thus hm =∗ cj. Since Sj∩ck = Sj∩cj, i
cj
y is also an initial segment of

some informant i for ck. But M finitely infers ck when fed i and M(iy) = m. Hence,

we obtain hm =∗ ck.

Sufficiency. We set H = (cj)j∈N and prove that there is an IIM M that Fin∗Inf H–

identifies C. So, let c ∈ C, let i ∈ Info(c), and let y ∈ N.

IIM M : “On input iy do the following:

If y = 0 or M(iy−1) = ?, goto (A). Otherwise, output j = M(iy−1).

(A) For j = 0, . . . , y, generate Sj and test whether or not Sj∩cj ⊆ content+(iy)

and (Sj ∩ cj) ⊆ content−(iy). In case there is a j fulfilling the test, output

the minimal one. Otherwise, output “?.”

One directly sees that M learns as required. 2

The next result provides some evidence that it is a bit more complicated to char-

acterize FinaInf for any a ∈ N+.

Theorem 28. Let a ∈ N+. There is an indexable class C ∈ FinaInf such that, for all

class preserving hypothesis spaces H for C, there is no IIM M that FinaInf H–learns C.
Proof. We discuss the case of a = 1, only. The adaptation for the case of larger a’s

should be obvious.

For all k ∈ N, we let ck = {bkdj | j ∈ N}. The required indexable class C is defined

as follows. For all k ∈ N with ϕk(k) ↑, C contains the concept ck, while, for all k ∈ N
with ϕk(k) ↓, C contains the concepts c′k = ck \{bkdΦk(k)+1} and c′′k = ck \{bkdΦk(k)+2}.

It is not hard to see that C ∈ Fin1Inf . Next, suppose, there are a class preserving

hypothesis space H = (hj)j∈N and an IIM M that Fin1Inf H–identifies C. Then, the

following algorithm A, based on H and M , solves the halting problem.

34 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Algorithm A: On input k proceed as follows:

For z = 0, 1, . . ., execute (α) until (β1) or (β2) happens.

(α) Test whether or not Φk(k) ≤ z. In case it is not, fix the initial segment ick
z

of ck’s lexicographically ordered informant ick and determine M(ick
z).

(β1) Φk(k) ≤ z has been verified. Then, output “ϕk(k) ↓” and stop.

(β2) M(ick
z) 6= ? has been verified. Then, output “ϕk(k) ↑” and stop.

The verification of A’s correctness is straightforward. 2

Analogously to Theorem 13, finite learning with ana priori bounded number of

allowed anomalies can be characterized as follows.

Theorem 29. For all C ∈ IC and all a ∈ N: C ∈ FinaInf iff there are a hypothesis

space H = (hj)j∈N and a recursively generable family (Sj)j∈N of finite sets such that:

(1) for all c ∈ C, there is a j ∈ N such that Sj ∩ c = Sj ∩ hj,

(2) for all j ∈ N and all c ∈ C, if Sj ∩ c = Sj ∩ hj, then c =a hj.

Proof. The theorem can easily be proved by combining the ideas from the demon-

stration of Theorems 13 and 27. We omit the details. 2

Next, we show that the known inclusions FinTxt ⊂ FinInf ⊂ ConsvTxt (cf. Lange

and Zeugmann [14]) generalize as follows.

Theorem 30. FinaTxt ⊂ FinaInf ⊂ ConsvaTxt for all a ∈ N ∪ {∗}.

Proof. By definition, FinaTxt ⊆ FinaInf for all a ∈ N ∪ {∗}. Furthermore, let

C = (
⋃

k∈N+{{bk}}) ∪ {{b}}∗. One easily verifies that C ∈ FinInf \ Fin∗Txt .

Next, let c = {b}∗ and let ck = {b0, . . . , bk, dk} for all k ∈ N. Furthermore, let

Csep = (
⋃

k∈N{ck}) ∪ {c}. It is not hard to see that Csep ∈ ConsvTxt . Moreover, one

directly sees that there cannot be a finite set S for the concept c satisfying Property

(1) of Theorem 27. Hence, we have Csep /∈ Fin∗Inf .

Now, we verify FinaInf ⊆ ConsvaTxt for all a ∈ N. Let C ∈ FinaInf . By The-

orem 29, there is a hypothesis space H = (hj)j∈N and a recursively generable family

(Sj)j∈N of finite sets such that:

(1) for all c ∈ C, there is a j ∈ N such that Sj ∩ c = Sj ∩ hj,

(2) for all j ∈ N and all c ∈ C, if Sj ∩ c = Sj ∩ hj, then c =a hj.

The required conservative IIM M also uses the hypothesis space H and is defined

as follows.

Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

Learning Approximations of Recursive Concepts 35

IIM M : “On input ty do the following:

If y = 0 or M(ty−1) = ?, goto (A). Otherwise, set j = M(ty−1) and test whether

or not Sj ∩ content(ty) ⊆ hj. In case it is, output j. Otherwise, goto (A).

(A) For j = 0, . . . , y, generate Sj and test whether or not Sj ∩ hj ⊆ content(ty)

and Sj ∩content(ty) ⊆ hj. In case there exists a j fulfilling the test, output

the minimal one. Otherwise, output “?.”

By definition, M performs exclusively justified mind changes, and thus it is con-

servative. It suffices to show that M learns as required.

Let k = min{j | Sj∩hj = Sj∩c}. Since M never outputs a hypothesis that has been

rejected once, it is not hard to see that M must converge, say to k′. By construction,

we know that Sk′ ∩ hk′ ⊆ c. Moreover, for almost all y ∈ N, Sj ∩ content(ty) ⊆ hj is

fulfilled. Combining it with Sk′ ∩ c ⊆ hk′ , we may conclude that Sk′ ∩ hk′ = Sk′ ∩ c.

Hence, by Condition (2), we obtain c =a hk′ .

Finally, Fin∗Inf ⊆ Consv∗Txt can be shown by applying similar arguments as

above. We omit the details. 2

Furthermore, it is not hard to verify that the results obtained so far prove the exis-

tence of an infinite hierarchy of more and more powerful finite learners parameterized

in the number of allowed anomalies.

5. Conclusions

The present paper provided a systematic study of inductive inference of approxi-

mations for recursive concepts. These approximations have been allowed to describe

a finite variant of the target concept as well as a variant that has at most an a priori

bounded number of anomalies. We studied finite inference, set-driven identification,

conservative inference, learning in the limit and behaviorally correct learning. Thus,

our work completes to a larger extent the study of learning indexable classes with

respect to their principal inferability.

Looking at results previously obtained in the field of inductive inference with

anomalies, some of our results could have been expected. For example, the infinite

hierarchies for finite learning, conservative inference, set-driven identification, learn-

ing in the limit and behaviorally correct inference in the number of allowed anomalies

are not surprising. But there are a several results, at least we did not conjecture.

First, the equality Sdr ∗Txt = Consv ∗Text = Lim∗Txt nicely contrasts the severe

restriction caused by the requirement to learn conservatively in the anomaly-free case.

Second, as far as we are aware of, within the setting of learning indexable classes till

now consistency did not constitute a restriction to the learning power. However,

as Theorem 18 shows, conservative inference with an a priori bounded number of

allowed anomalies cannot always be achieved.

36 Steffen Lange, Gunter Grieser and Thomas Zeugmann

Finally, our characterization theorems complete the picture that has been obtained

since Angluin’s [2] pioneering paper. All learning models considered can be character-

ized by using finite tell-tale sets. Abstracting from technical details, if these sets are

recursive, conservative learning is possible. For recursively enumerable tell-tale sets

learning in the limit can be achieved. Furthermore, the pure existence of such tell-tale

sets is sufficient to design behaviorally correct learners (see also [3]). Concerning the

latter result, our main contribution here is the proof that Bc∗Txt–identification for

indexable classes can always be achieved by using a hypothesis space with uniformly

decidable membership.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Infor-

mation and Control, 45:117–135, 1980.

[3] G.R. Baliga, J. Case, and S. Jain. The synthesis of language learners. Information

and Computation, 152:16–43, 1999.

[4] J.M. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory

of Algorithms and Programs Vol. 1, pages 82–88, Latvian State University, 1974

(Russian).

[5] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.

Information and Control, 28:125–155, 1975.

[6] M. Blum. A machine-independent theory of the complexity of recursive functions.

Journal of the ACM, 14:322–336, 1967.

[7] J. Case and C. Lynes. Machine inductive inference and language identification.

In Automata, Languages and Programming, 9th Colloquium, Proceedings, volume

140 of Lecture Notes in Computer Science, pages 107–115. Springer-Verlag, 1982.

[8] J. Case and C.H. Smith. Comparison of identification criteria for machine induc-

tive inference. Theoretical Computer Science 25:193–220, 1983.

[9] , R.P. Daley. On the error correcting power of pluralism in BC-type inductive

inference. Theoretical Computer Science 24:95–104, 1983.

[10] M.A. Fulk. Prudence and other conditions on formal language learning. Infor-

mation and Computation, 85:1–11, 1990.

[11] E.M. Gold. Language identification in the limit. Information and Control, 10:447–

474, 1967.

Learning Approximations of Recursive Concepts 37

[12] S. Jain, D. Osherson, J.S. Royer, and A. Sharma. Systems that Learn - 2nd

Edition, An Introduction to Learning Theory. MIT Press, Cambridge, Mass.,

1999.

[13] E. Kinber and T. Zeugmann. One-Sided Error Probabilistic Inductive Inference

and Reliable Frequency Identification. Information and Computation 92:253–284,

1991.

[14] S. Lange and T. Zeugmann. Types of monotonic language learning and their char-

acterization. In Proc. 5th Annual ACM Workshop on Computational Learning

Theory, pages 377–390. ACM Press, 1992.

[15] S. Lange and T. Zeugmann. Language learning in dependence on the space of

hypotheses. In Proc. 6th Annual ACM Conference on Computational Learning

Theory, pages 127–136. ACM Press, 1993.

[16] S. Lange and T. Zeugmann. Set-driven and rearrangement-independent learning

of recursive languages. Mathematical Systems Theory, 29:599–634, 1996.

[17] J.S. Royer. Inductive inference of approximations. Information and Control,

70:156–178, 1986.

[18] T. Tabe and T. Zeugmann. Two variations of inductive inference of languages

from positive data. Technical Report RIFIS-TR-CS-105, Kyushu University,

1995.

[19] K. Wexler and P.W. Culicover. Formal Principles of Language Acquisition. MIT

Press, Cambridge, Mass., 1980.

[20] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning

recursive languages. In K.P. Jantke and S. Lange, editors, Algorithmic Learning

for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961, pages

190–258. Springer-Verlag, 1995.

