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Abstract. We study active learning of classes of recursive functions by
asking value queries about the target function f , where f is from the
target class. That is, the query is a natural number x, and the answer
to the query is f(x). The complexity measure in this paper is the worst-
case number of queries asked. We prove that for some classes of recursive
functions ultrametric active learning algorithms can achieve the learning
goal by asking signi�cantly fewer queries than deterministic, probabilis-
tic, and even nondeterministic active learning algorithms. This is the �rst
ever example of a problem where ultrametric algorithms have advantages
over nondeterministic algorithms.

1 Introduction

Inductive inference has been studied intensively. Gold [12] de�ned learning in the

limit. The learner is a deterministic algorithm called inductive inference machine
(abbr. IIM), and the objects to be learned are recursive functions. The informa-
tion source are growing initial segments (x0, f(x0)), . . . , (xn, f(xn)) of ordered
pairs of the graph of the target function f . It is assumed that every pair (x, f(x))
appears eventually. As a hypothesis space one can choose any Gödel numbering

ϕ0, ϕ1, ϕ2, . . . of the set of all partial recursive functions over the natural num-
bers N = {0, 1, 2, . . .} (cf. [27]). If an i ∈ N is such that ϕi = f then we call i a
ϕ-program of f . An IIM, on input an initial segment (x0, f(x0)), . . . , (xn, f(xn)),
has to output a natural number in which is interpreted as ϕ-program. An IIM
learns f if the sequence (in)n∈N of all computed ϕ-programs converges to a
program i such that ϕi = f .

Every IIM M learns some set of recursive functions which is denoted by
EX(M). The family of all such sets, over the universe of e�ective algorithms
viewed as IIMs, serves as a characterization of the learning power inherent in
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the Gold model. This family is denoted by EX (short for explanatory) and it is
de�ned by EX = {U | ∃M(U ⊆ EX(M)}. Many studies of inductive inference
set-theoretically compare the family EX with families that arise from considering
other models (cf., e.g., [30]). One such model is �nite learning, where the IIM
either requests a new input and outputs nothing, or it outputs a program i, and
stops. Again we require that program i is correct for f , i.e., ϕi = f .

The models described so far are models of passive learning, since the IIM
has no in�uence on the order in which examples are presented. In contrast, the
learning model considered in the present paper is an active one. This model goes
back to Angluin [3] and is called query learning. In the query learning model the
learner has access to a teacher that truthfully answers queries of a prespeci�ed
type. In this paper we only consider value queries. That is, the query is a natural
number x, and the answer to the query is f(x). A query learner is an algorithmic
device that, depending on the answers already received, either computes a new
value query or it returns a hypothesis i and stops. As above, the hypothesis is
interpreted with respect to a �xed Gödel numbering ϕ and it is required that
the hypothesis returned satis�es ϕi = f . So active learning is �nite learning.

As in the Gold [12] model, we are interested in active learners that can infer
whole classes of recursive functions. The complexity measure is then the worst-
case number of queries asked to identify all the functions from the target class U .
We refer to any query learner as query inference machine (abbr. QIM).

Automata theory and complexity theory have considered several natural gen-
eralizations of deterministic algorithms, namely, nondeterministic and proba-
bilistic algorithms. In many cases these generalized algorithms allow for compu-
tations having a complexity that is strictly less than their deterministic coun-
terpart. Such generalized algorithms attracted considerable attention in learn-
ing theory, too. Many papers studied learnability by nondeterministic algo-
rithms [1, 5, 11, 29] and probabilistic algorithms [14, 17, 21, 22, 25, 26].

De�nition 1. We say that a nondeterministic QIM learns a function f if

(1) there is at least one computation path such that the QIM produces a correct

result on f , i.e., a program j such that ϕj = f ;
(2) at no computation path the QIM produces an incorrect result on f .

De�nition 2. We say that a probabilistic QIM learns a function f with a prob-
ability p if

(1) the sum of all probabilities of all leaves which produce a correct result on f ,
i.e., a number j such that ϕj = f , is no less than p;

(2) at no computation path the QIM produces an incorrect result on f .

Recently, Freivalds [7] introduced a new type of indeterministic algorithms called
ultrametric algorithms. An extensive research on ultrametric algorithms of var-
ious kinds is performed by him and his co-authors (cf. [4, 15]). So, ultrametric
algorithms are a very new concept and their potential still has to be explored.
This is the �rst paper showing a problem where ultrametric algorithms have

advantages over nondeterministic algorithms. Ultrametric algorithms are very
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similar to probabilistic algorithms but while probabilistic algorithms use real

numbers r with 0 ≤ r ≤ 1 as parameters, ultrametric algorithms use p-adic

numbers as parameters. The usage of p-adic numbers as amplitudes and the
ability to perform measurements to transform amplitudes into real numbers are
inspired by quantum computations and allow for algorithms not possible in clas-
sical computations. Slightly simplifying the description of the de�nitions, one
can say that ultrametric algorithms are the same as probabilistic algorithms,
only the interpretation of the probabilities is di�erent.

The choice of p-adic numbers instead of real numbers is not quite arbitrary.
Ostrowski [24] proved that any non-trivial absolute value on the rational num-
bers Q is equivalent to either the usual real absolute value or a p-adic absolute
value. This result shows that using p-adic numbers was not merely one of many
possibilities to generalize the de�nition of deterministic algorithms but rather
the only remaining possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [28],
chemistry [19] and molecular biology [6, 16] have introduced p-adic numbers to
describe measures of indeterminism. Indeed, research on indeterminism in nature
has a long history. Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called probability. Quantum
physics introduced a description in terms of complex numbers called amplitude of
probabilities and later in terms of probabilistic combinations of amplitudes most
conveniently described by density matrices. Using p-adic numbers to describe
indeterminism allows to explore some aspects of indeterminism but, of course,
does not exhaust all the aspects of it.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We are used to
rational and irrational numbers as measures for distances, and there is a psycho-
logical di�culty to imagine that something else can be used instead of rational
and irrational numbers, respectively. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered, while p-adic numbers cannot be linearly
ordered. This is why valuations and norms of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [23]). Quantum ampli-
tudes are complex numbers which also cannot be linearly ordered. The counter-
part of valuation for quantum algorithms is measurement translating a complex
number a + bi into a real number a2 + b2. Norms of p-adic numbers are rational
numbers. We continue with a short description of p-adic numbers.

2 p-adic Numbers and Ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p − 1 is
called a p-adic digit. A p-adic integer is by de�nition a sequence (ai)i∈N of p-adic
digits. We write this conventionally as · · · ai · · · a2a1a0, i.e., the ai are written
from left to right.
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If n is a natural number, and n = ak−1ak−2 · · · a1a0 is its p-adic represen-

tation, i.e., n =
∑k−1

i=0 aip
i, where each ai is a p-adic digit, then we identify n

with the p-adic integer (ai), where ai = 0 for all i ≥ k. This means that the
natural numbers can be identi�ed with the p-adic integers (ai)i∈N for which all
but �nitely many digits are 0. In particular, the number 0 is the p-adic integer
all of whose digits are 0, and 1 is the p-adic integer all of whose digits are 0
except the right-most digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p is represented

as · · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have in�nitely many (!) digits to the left of the �p-adic� point but
only a �nite number of digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers.
They are related to the notion of absolute value of numbers. If X is a nonempty
set, a distance, or metric, on X is a function d from X×X to the nonnegative real
numbers such that for all (x, y) ∈ X ×X the following conditions are satis�ed.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

A set X together with a metric d is called a metric space. The same set X
can give rise to many di�erent metric spaces. If X is a linear space over the real
numbers then the norm of an element x ∈ X is its distance from 0, i.e., for all
x, y ∈ X and α any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(2) ‖α · y‖ = |α| · ‖y‖,
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Note that every norm induces a metric d, i.e., d(x, y) = ‖x − y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However,
there are other norms as well. A norm is called ultrametric if Requirement (3)
can be replaced by the stronger statement: ‖x+y‖ ≤ max{‖x‖, ‖y‖}. Otherwise,
the norm is called Archimedean.

De�nition 3. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any

nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a,
be the highest power of p which divides a, i.e., the greatest number m ∈ N such

that a ≡ 0 (mod pm). For any rational number x = a/b we de�ne ordp x =df

ordp a− ordp b. Additionally, ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1
ord3 x = +2
ord5 x = −2

ord7 x = +1
ord11 x = −1
ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

De�nition 4. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any ra-

tional number x, we de�ne its p-norm as p−ordp x, and we set ‖0‖p =df 0.
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For example, with x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1 we obtain:

‖x‖2 = 2
‖x‖3 = 1/9
‖x‖5 = 25

‖x‖7 = 1/7
‖x‖11 = 11
‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .

Rational numbers are p-adic integers for all prime numbers p. Since the def-
initions given above are all we need, we �nish our exposition of p-adic numbers
here. For a more detailed description of p-adic numbers we refer to [13, 18].

We continue with ultrametric algorithms. In the following, p always denotes
a prime number. Ultrametric algorithms are described by �nite directed acyclic
graphs (abbr. DAG), where exactly one node is marked as root. As usual, the
root does not have any incoming edge. Furthermore, every node having outdegree
zero is said to be a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-
adic number which we call amplitude. We require that the sum of all amplitudes
that correspond to v is 1. In order to determine the total amplitude along a
computation path, we need the following de�nition.

De�nition 5. The total amplitude of the root is de�ned to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let

β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek

of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the

total amplitude of v`, ` ∈ {1, . . . , k}, is de�ned as follows.

(1) If the indegree of v` is one, then its total amplitude is αβ`.
(2) If the indegree of v` is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total

amplitudes of the predecessors of v` and let β`, δ2, . . . , δm be the amplitudes

of the incoming edges The total amplitude of the node v` is then de�ned to

be αβ` + γ2δ2 + · · ·+ δmγm.

Note that the total amplitude is a p-adic integer.
We refer the reader to the proof of Theorem 7 for an example.
It remains to de�ne what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is speci�ed by performing a
so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to ‖β‖p.
We refer to ‖β‖p as the p-probability of the corresponding computation path.

De�nition 6. We say that a p-ultrametric algorithm produces a result m with
a p-probability q if the sum of the p-probabilities of all leaves which correctly

produce the result m is no less than q.

De�nition 7. We say that a p-ultrametric QIM learns a function f with a
p-probability q if

(1) the sum of the p-probabilities of all leaves which produce a correct result

on f , i.e., a number j such that ϕj = f , is no less than q;
(2) at no computation path the QIM produces an incorrect result on f .
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3 Results

As explained in the Introduction we are interested in the number of queries a
QIM has to ask in the worst-case in order to infer all recursive functions from
a prespeci�ed class U . The hypothesis space will always be a Gödel number-
ing ϕ (cf. [27]). This is no restriction of generality since all natural programming
languages provide Gödel numberings of recursive functions.

The complexity of learning recursive functions has been an important topic
for several decades [2, 8, 10, 30]. In this paper we compare the query complexity
of deterministic, nondeterministic, probabilistic, and ultrametric QIMs.

Our results are somewhat unexpected. Usually, for various classes of prob-
lems, nondeterministic algorithms provide the smallest complexity, deterministic
algorithms provide the largest complexity and probabilistic algorithms provide
some medium complexity. In [4, 7, 15] ultrametric algorithms also gave medium
complexity sometimes better and sometimes worse than probabilistic algorithms.
Our results in this paper show that, for learning recursive functions from value
queries, there are classes U of recursive functions such that ultrametric QIMs
have a much smaller complexity than even nondeterministic QIMs.
To show these results we use a combinatorial 0

1 5

43
6

2

Fig. 1. The Fano Plane

structure called the Fano plane. It is one of
�nite geometries (see [20]). The Fano plane
consists of seven points 0, 1, 2, 3, 4, 5, 6 and
seven lines (0, 1, 3), (1, 2, 4), (2, 3, 5),(3, 4, 6),
(4, 5, 0), (5, 6, 1), (6, 0, 2). For any two points
i, j with i 6= j, in this geometry there is
exactly one line that contains these points
(cf. Figure 1). For any two di�erent lines in
this geometry there is exactly one point con-
tained in these two lines. In our construc-
tion the points 0, 1, 2, 3, 4, 5, 6 are interpreted as colored in two colors RED and
BLUE, respectively.

Lemma 1 ([20]). For an arbitrary coloring of the Fano plane there is at least

one line the 3 points of which are colored by the same color.

Lemma 2 ([20]). For any coloring of the Fano plane there cannot exist two

lines colored in opposite colors.

Proof. Any two lines intersect at some point. ut

To simplify notation, in the following we use P and R to denote the set of all
partial recursive functions and of all recursive functions of one variable over N,
respectively. Let ϕ be a Gödel numbering of P. We consider the following class
U7 of recursive functions. Each function f ∈ U7 is such that f ∈ R and:

(1) every f(x) where 0 ≤ x ≤ 6 equals either 2s or 3t, where s, t ∈ N, s, t ≥ 1,
(2) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 2s and f(x2) = 2t, then f(x1) = f(x2),
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(3) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 3s and f(x2) = 3t, then f(x1) = f(x2),
(4) there is a line (i, j, k) in the Fano plane such that f(i) = f(j) = f(k) = 2s

and ϕs = f or there exists a line (i, j, k) in the Fano plane such that f(i) =
f(j) = f(k) = 3t and ϕt = f .

Comment. In our construction of the class U7 the points 0, 1, 2, 3, 4, 5, 6 can
be interpreted as colored in two colors. Some points f(i) are such that f(i) = 2s

(these points are described below as RED) while some other points j are such
that f(j) = 3t (these points are described below as BLUE). The properties of
the Fano plane ensure that for every such coloring in two colors there exists a
line such that the three points on this line are colored in the same color, and
there cannot exist two lines colored in opposite colors.

De�nition 8. A partial coloring C of a Fano plane is an assignment of colors

RED, BLUE, NONE to the points of the Fano plane.

A partial coloring C2 is an extension of a partial coloring C1 if every point

colored RED or BLUE in C1 is colored in the same color in C2.

A partial coloring C of a Fano plane is called complete if every point is

colored RED or BLUE.

Lemma 3. Given any partial coloring C of the points in the Fano plane assign-

ing colors RED and BLUE to some but not all points such that no line contains

three points in the same color, there exists

(1) a complete extension of the given coloring C such that it contains a line with

three RED points, and

(2) a complete extension of the given coloring C such that it contains a line with

three BLUE points.

Proof. Color all the not colored points RED for the �rst function, and BLUE
for the second function. ut

Lemma 4. Given any partial coloring C of points in the Fano plane assigning

colors RED and BLUE to some but not all points such that no line contains 3

points in the same color, there exist numbers k∗, `∗ ∈ N and

(1) a function fRED ∈ U7 de�ned as f(x) = 2`∗ for all x colored RED in C
such that fRED contains a line with three RED points, and all the points

0, 1, 2, 3, 4, 5, 6 are colored RED or BLUE,

(2) a function fBLUE ∈ U7 de�ned as f(x) = 3k∗ for all x colored BLUE in C
such that fBLUE contains a line with three BLUE points, and all the points

0, 1, 2, 3, 4, 5, 6 are colored RED or BLUE.

Proof. The assertions of the lemma can be shown by using the �xed point the-
orem [27] and by using Lemma 3. ut

Theorem 1. There is a deterministic QIM M that learns the class U7 with 7

queries.
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Proof. The desired QIM M queries the points 0, 1, . . . , 6. After having received
f(0), f(1), f(2), . . . , f(6), it checks at which line all points have the same color,
and outputs the ϕ-program corresponding to this line. Note that by Lemmata 1
and 2 there is precisely one such line. By the de�nition of the class U7 one can
directly output a correct ϕ-program for the target function f . ut

Theorem 2. There exists no deterministic QIM learning U7 with 6 queries.

Proof. The proof is by contradiction. Using Smullyan's double �xed point theo-
rem [27] one can construct two functions f and f̃ such that both are in U7 but
at least one of them is not correctly learned by the QIM M . ut

Theorem 3. There is a nondeterministic QIM M learning U7 with 3 queries.

Proof. The QIM M starts with a nondeterministic branching of the computation
into 7 possibilities corresponding to the 7 lines in the Fano plane. In each case,
all 3 points i, j, k are queried. If f(i), f(j), f(k) are not of the same color then the
computation path is aborted. If they are of the same color, e.g., f(i) = 2si , f(j) =
2sj , f(k) = 2sk then the de�nition of the class U7 ensures that si = sj = sk and
the QIM M outputs si which is a correct program computing the function f . ut

Theorem 4. There is no nondeterministic QIM learning U7 with 2 queries.

Proof. By Lemma 4, there are two distinct functions in the class U7 with the
same values queried by the nondeterministic algorithm. The output is not correct
for at least one of them. ut

Theorem 5. There is a probabilistic QIM M learning U7 with probability 1
7

with 3 queries.

Proof. The algorithm starts with branching its computation into 7 possibilities
corresponding to the 7 lines in Fano plane. Each branch is reached with proba-
bility 1/7. In each branch, all 3 points i, j, k are queried. If f(i), f(j), f(k) are
not of the same color then the computation path is aborted. If they are of the
same color, e.g., f(i) = f(j) = f(k) = 2s, then s is output. By de�nition of the
class U7 the result is a correct program computing the function f . ut

Theorem 6. There is a probabilistic QIM M learning U7 with probability 4
7

with 6 queries.

Theorem 7. For every prime number p, there is a p-ultrametric QIM M learn-

ing U7 with p-probability 1 with 2 queries.

Proof. The desired QIM M branches its computation path into 7 branches at
the root, where each branch corresponds to exactly one line of the Fano plane.
We assign to each edge the amplitude 1/7. At the second level, each of these
branches is branched into 3 subbranches each of which is assigned the amplitude
1/3. So far we have at level three 21 nodes denoted by v1, . . . , v21 (cf. Figure 2).
For each of these nodes we formulate two queries. Let v be such that its father
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`1 `2 `3 `4 `5 `6 `7

1/7 1/7 1/7 1/7 1/7 1/7

1/31/31/3

1/31/3

1/31/3

1/3

1/31/3

1/3

1/31/3

1/3

1/31/31/3

1/31/3

1/3 1/3

1/7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

Fig. 2. The �rst three levels of the DAG representing the computation of the QIM M

node corresponds to the line containing the point i, j, k of the Fano plane, where
we order these points such that i < j < k. If v is the leftmost node then we
query (i, j), if v is the middle node then we query (j, k) and if v is the rightmost
node then we query (i, k). Every triple of nodes having the same father share
a register, say rijk. Initially, the register contains the value ↑ which stands for
�no output.� The node activated when reached in the computation path sends
the following value to rijk. After having received the answer to its queries, e.g.,
f(i) = 2s and f(j) = 3t then it writes 0 in rijk, and if the values coincide, e.g.,
f(i) = 3t and f(j) = 3t, then it writes t in rijk.

Looking at any triple of nodes having a common father at the third level, we
note that the following 8 cases may occur as answer. We use again the corre-
sponding colors, where R and B are shortcuts for RED and BLUE, respectively.

(i, j) (j, k) (i, k) (i, j) (j, k) (i, k)
(B,B) (B,R) (B,R) (R,R) (R,B) (R,B)
(B,B) (B,B) (B,B) (R,R) (R,R) (R,R)
(B,R) (R,R) (B,R) (R,B) (B,B) (R,B)
(B,R) (R,B) (B,B) (R,B) (B,R) (R,R)

Thus, we need for each node at the third level 8 outgoing edges as the table
above shows. If the edge corresponds to a pair (R,R) or (B,B) then we assign
the amplitude 1/2 and otherwise the amplitude −1/4. Note that sum of these
amplitudes is again 1.

Finally, we join each triple as shown in table above into one node, e.g.,
the edges corresponding to (B,B), (B,R), and (B,R) are joined. If the total
amplitude of such a node at the third level is di�erent from zero, then the node
produces as output the value stored in register rijk. Figure 3 shows the part of
the DAG for the queries performed for the �rst line of the Fano plane, i.e., for the
line (0, 1, 3). So this part starts at the nodes v1, v2 and v3 shown in Figure 2. For
the sake of readability, we show the queries asked at each node, i.e., (0, 1) at node
v1, (1, 3) at node v2, and (0, 3) at node v3. A dashed (blue) edge denotes the case
that both answers to the queries asked at the corresponding vertex returned a
value of f indicating that the related nodes of the �rst line of the Fano plane are
blue. This result is then propagated along the dashed (blue) edges. Analogously,
a dotted (red) edge indicates that both answers corresponded to a red node of the
�rst line of the Fano plane. If the answers returned function values indicating
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that the colors of the queried nodes of the �rst line of the Fano plane have
di�erent colors then the edge is drawn in black. Dashed (blue) and dotted (red)
edges have the amplitude 1/2 and the black edges have the the amplitude −1/4.
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�����
�����

������������������������������

������������������������������

(0, 1) (1, 3) (0, 3)

Fig. 3. The part of the DAG representing the computation of the QIM M for the line
(0, 1, 3) starting at the nodes of the third level

It remains to show that the QIM M has the desired properties. By construc-
tion, at every computation path exactly two queries are asked.

Next, by De�nition 5 it is obvious that the total amplitude of each node at
the second level is 1/21. Next, we consider any node at the third level. If a triple
(B,B), (B,B), and (B,B) is joined then the total amplitude is

1
21

· 1
2

+
1
21

· 1
2

+
1
21

· 1
2

=
1

2 · 7
.

The same holds for (R,R), (R,R), and (R,R) (cf. De�nition 5). Figure 3 shows
the corresponding leaves in a squared pattern and lined pattern, respectively.

If a triple has a di�erent form than considered above, e.g., (B,B), (B,R),
and (B,R) then, again by De�nition 5, we have for the total amplitude

1
21

· 1
2
− 1

21
· 1
4
− 1

21
· 1
4

= 0 .

One easily veri�es that all remaining total amplitudes are also 0. Finally, we
perform the measurement. Clearly, for each leaf which has a total amplitude 0
the measurement results in ‖0‖p = 0. For the remaining leaves we obtain ‖ 1

2·7‖p

which is 1 for every prime p such that p /∈ {2, 7}. If p = 2 then we have ‖ 1
2·7‖2 = 2

and for p = 7 we get ‖ 1
2·7‖7 = 7.

By Lemma 1 there must be at least one line such that all nodes have the
same color, and by Lemma 2 it is not possible to have a line colored in RED and
a line colored in BLUE simultaneously. So at least one node has p-probability
at least 1, and the result output is correct by the de�nition of the class U7.

If there are several lines colored in the same color then distinct but correct
results may be produced, since any two lines share exactly one point. Thus, the
resulting p-probability is always no less than 1. ut

The idea of this paper can be extended to obtain even more spectacular
advantages of ultrametric algorithms over nondeterministic ones. It is proved
that there exist �nite projective geometries with n2 +n+1 points and n2 +n+1
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lines such that any two lines have exactly one common point and any two points
lie on a common line. This allows us to construct a class Um of recursive functions
similar to the class U7 above, where m =df q2 + q + 1 for any prime power q.
The counterpart of Lemma 1 does not hold but this demands only an additional
requirement for the function in the class to have a line colored in one color. Due
to the lack of space, we have to omit these results here, but refer the interested
reader to [9].

4 Conclusions

In this paper we have studied active learning of classes of recursive functions
from value queries. We compared the query complexity of deterministic, nonde-
terministic, probabilistic, and ultrametric QIM and showed the somehow unex-
pected result that p-ultrametric QIM can learn classes of recursive function with
signi�cantly fewer queries than nondeterministic, probabilistic QIM can do.
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