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Abstract

Recently, an efficient method of database analysis using
Zero-suppressed Binary Decision Diagrams (ZBDDs) has
been proposed. BDDs are a graph-based representation of
Boolean functions, now widely used in system design and
verification. Here we focus on ZBDDs, a special type of
BDDs, which are suitable for handling large-scale combi-
natorial itemsets in transaction databases. The ZBDD size
greatly depends on the variable ordering used. In this pa-
per, we propose a new method of ZBDD variable ordering
for itemset mining of large-scale transaction databases, and
show experimental results.

1. Introduction

Discovering useful knowledge from large-scale
databases has attracted a considerable attention during the
last decade (cf., e.g., [11]). Frequent pattern mining is
one of the fundamental data mining problems. Since the
pioneering paper by Agrawal et al. [1] various algorithms
have been proposed to solve the frequent pattern mining
problem (cf., e.g., [12, 4]).

Recently, we have attacked the problem of efficiently
generating the frequent patterns in a transaction database by
using a data structure called Zero-suppressed Binary Deci-
sion Diagrams (abbr. ZBDDs), see [6][7, 8]. ZBDDs are a
special case of Binary Decision Diagrams (abbr. BDDs) [2].

Using ZBDDs one can implicitly enumerate sets of com-
binations. Moreover, one can then perform efficiently vari-
ous operations including the discovery and analysis of fre-
quent patterns. It is known that the efficiency of these meth-
ods is greatly influenced by the variable ordering used in
constructing the ZBDDs. So, the situation is comparable to
BDDs, where the variable ordering also heavily influences

the resulting size. As far as BDDs are concerned, the prob-
lem of finding a suitable variable ordering has been studied
intensively (see, [3, 5, 9]) but for ZBDDs when used for
mining transaction databases this line of research is still in
its infancy. In the present paper, we propose a method for
computing a variable ordering for ZBDDs which is based
on the structure of database to be mined and present exper-
imental results.

2. Database Representations Using ZBDDs

We consider databases of the following type. Let M # ()
be any set. We refer to the elements of M as to items. In
our examples below, we use M = {a,b,c}. Then the set
of all possible combinations is the power set (M) of M.
Any subset C C (M) is said to be a set of combinations.
The elements of a set of combinations are sets of items, e.g.,
{a, ¢}. To simplify notation, we write ac instead of {a, c}
and we refer to the elements of a set of combinations as to
tuples. A transaction database is just a list of tuples.

In order to mine useful information from a transaction
database it is very helpful to consider two types of his-
tograms. The first type is called tuple histogram. A tuple
histogram is a table having two columns. The first column
contains all tuples that appear in the database and the second
column contains the frequency of the tuple, i.e., a number
describing how often the corresponding tuple appears in the
database. The table in Fig. 3 is an example of a tuple his-
togram.

The second type of histogram is called pattern his-
togram. It contains a tuple and all subsets of it (again in
the first column) and in the second column the number of
appearances of the corresponding item sets in the database.
For example, a and ¢ each appear 8 times and b appears
10 times in the database used for constructing the table in
Fig. 3.



Binary Decision Tree

Figure 1. Binary Decision Tree, BDDs and ZB-
DDs

Histograms are important, since from a tuple histogram
one can easily find frequent tuples and from a pattern his-
togram frequent patterns. Also, we mainly use the tuple
histogram to compute from it the pattern histogram. Details
are provided below. A typical data mining task is then to
find all frequent patterns that are equal to or above some
given threshold. For instance, suppose we are given the
database from our example above and the threshold 10, then
the data mining algorithm should return b. Given threshold
8, it should return a, b and c. Clearly, since the databases
are usually very large, the main problem is how to do this
efficiently.

Using the VSOP (Valued-Sum-Of-Products calcula-
tor) [7], we resolve this task as follows. Receiving a
database and threshold as input, VSOP internally gener-
ates a ZBDD to represent the tuple histogram. Then, using
the ZBDD-growth algorithm [8] developed by our group,
a ZBDD is generated that represents all frequent patterns
above or equal to the given threshold. In both steps the
same variable ordering is used and this ordering heavily af-
fects the size of the resulting ZBDDs (see Subsection 4.2).
We continue with a more detailed description.

2.1. BDDs and ZBDDs

A BDD [2] is a graph representation for a Boolean func-
tion. An Example is shown in Fig. 1 for S(a,b,c) =
abe \ abe.

Given a variable ordering (in our example a, b, c), one
can use Bryant’s algorithm[2] to construct the BDD for
any given Boolean function. For many Boolean functions
appearing in practice this algorithm is quite efficient and
the resulting BDDs are much more efficient representations
than binary decision trees.

BDDs were originally invented to represent Boolean
functions. But we can also map a set of combinations into
Boolean space of n variables, where n is the cardinality of
the item set M (see Fig. 2). So, one could also use BDDs
to represent sets of combinations. However, one can even

obtain a more efficient representation by using ZBDDs [6].
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Figure 2. Correspondence of Boolean func-
tions and sets of combinations.

If there are many similar combinations then many sub-
graphs are shared resulting in a smaller representation. ZB-
DDs have a special type of node deletion rule. All nodes
whose 1-edge directly points to the O-terminal node are
deleted. Because of this, the nodes of items that do not ap-
pear in any sets of combinations are automatically deleted
as shown in Fig.1.

Tuple | Frequency | F, | F,
abc 5(101) 110
ab 3(011) 0|1
bc 2(010) 0|1
(¢ 1(001) 0|0

F, = {abc,ab,c}
F, ={ab,bc},F, ={abc}

Figure 3. Representation of a tuple histogram

It remains to explain how to represent a tuple histogram
by using ZBDDs. Since ZBDDs are representations of
sets of combinations, a simple ZBDD distinguishes only
the existence of each combination in the database. In or-
der to represent the numbers of combination’s appearances,
we decompose the number into m-digits of ZBDD vector
{Fo, F1,...,Fy_1} torepresent integers up to (2™ —1), as
shown in Fig. 3. Namely, we encode the appearance num-
bers into binary digital code, where F|, represents a set of
tuples appearing odd times (LSB = 1), F represents a set of
combinations whose appearance number has a 1 in the sec-
ond lowest bit, and similarly we define the set of each digit
up to F,,—1. In the example of Fig. 3, the item set frequen-
cies are decomposed as: Fy = {abc, ab, c}, Fy = {ab, bc},
F5 = {abc}, and then each digit can be represented by a
simple ZBDD. The three ZBDDs share their sub-graphs to
one another.



By using the VSOP calculator, we can efficiently gener-
ate the tuple histograms on the transaction databases. How-
ever, if we have a tuple containing & items, then it contains
2% many patterns. Thus, pattern histograms are exponen-
tially larger than tuple histograms. If we use ZBDDs, we
can represent similar patterns compactly by sharing nodes
in the graph of the ZBDD. Thus, we are able to generate
pattern histograms to some degree of scale. So the idea
is to generate only the pattern histograms for the patterns
appearing frequently, i.e., above or equal to the threshold
given. This is done by using the ZBDD-growth algorithm
(see Minato [8]).

3. ZBDD Variable Ordering for Database Rep-
resentation

As described above, it is possible for us to represent his-
tograms of frequent pattern sets compactly by using the
ZBDD data structure. However, in the case of large-scale
databases, it is difficult to generate the ZBDDs. For at-
tacking this problem, we consider “the variable ordering of
items.” As already noted, the resulting ZBDD size is quite
sensitive with respect to the underlying ordering of the vari-
ables. So, we aim to find a “good” variable ordering such
that the resulting ZBDD size is close to the smallest size
possible.

Clearly, if the cardinality of the item set M is small, then
any ordering can be used. But if there are many items, then
the exponential size of pattern histograms requires a very
compact representation in order to be manageable. Thus, in
such cases we can expect a huge benefit if we are able to
find very compact ZBDD representations.

By default, the VSOP calculator uses the “late appear-
ance upper ordering.” That is, the item observed first in
the database stays on the bottom of the ordering. The next
item observed goes on top of it and so on. For example, if
the database is given by the list ac, befg, ba, h, then the
resulting ordering is h, g, f, e, b, ¢, a.

In the experiments we have performed previously for
mining transaction databases by using our ZBDD data
structure, we almost always used this ordering. The cost
for computing this ordering are zero and quite often a rel-
atively good ordering is obtained. However, this ordering
solely depends on the ordering of records in the database,
and thus may result also in a bad ordering. So, we looked
for a different method which should result in a good order-
ing and which should be independent on the order of items
in the database. The method obtained is, at least in spirit,
similar to a method used for BDDs. Thus, we shortly de-
scribe this method for BDDs.

3.1. Dynamic Weight Assignment Method for Or-
dinary BDDs

In the field of logic VLSI circuit design, many re-
searchers have dealt with the problem of finding good vari-
able orderings for BDDs. In particular, Minato [9] proposed
the so-called “dynamic weight assignment method” which
turned out to be quite successful. Nevertheless, the problem
of finding the optimal variable ordering for BDDs is known
to be NP-complete [10].

For ordinary BDDs, two features of the variable ordering
are known that affect the size of the resulting BDDs [3].

(1) Pairs of inputs having the local computability property
should be kept close to one another in the ordering.
This will then results in may shared subgraphs.

(2) Inputs having a strong influence to the output should
be located at higher order.

Although one should try to come up with orderings obey-
ing these two features, it may be difficult to do so, since
these requirements are sometimes contradictory.

On the other hand, there are good heuristic methods
computing the variable ordering by using information about
the connectivity in circuits. Minato’s [9] “dynamic weight
assignment method” (abbr. DWA method) belongs to this
group.

In the DWA method, in order to fulfill Feature (2) de-
scribed above, one searches for inputs having strong power
to control the output. This is done by analyzing the follow-
ing.

e There are many fan-out’s (there are many path to out-
put).
e There are less steps until the output.

e There are less fan-in’s on the path to the output.

For analyzing theses features, the following weight assign-
ment method is used.

(1) Assign weight ”1” to the output line.

(2) Carry the weights from output to input. If there are the
gates having more than 1 inputs, then the weights are
shared equally to inputs.

(3) For wires that are just connected, we add their weights.

Fig. 4 exemplifies the method described above. Part (a)
shows the initialization. The output gets weight 1. Since
the output gate has fan-in 3, all its input wires get weight
1/3.

We identify the input having maximal weight as the in-
put having the strongest power to control output, and the
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Figure 4. the Dynamic Weight Assignment Method for Logic Circuit
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Figure 5. the DWA Method for Transaction Database

corresponding input variable goes to the top of the variable
ordering.

Then we delete all the wires from this input to its sons
and repeat the whole procedure (see Part (b) in Fig. 4). This
repetition reflects the local computability, described above
as Feature (1). Let n be the number of input variables and
m the number of gates. Then the DWA method needs time
O(nm).

Next, we devise the DWA method to our problem of find-
ing a good variable ordering for ZBDDs.

3.2. Applying the DWA Method to ZBDDs

The adaptation is done as follows (see Fig. 5 for an ex-
ample). First, we construct a graph by introducing a node
for each item. In Fig. 5 we have 5 items and the nodes are
drawn on the left-hand side. Then, we draw a node for each
tuple in the database and finally a node marked All. All is
connected to each tuple. From each tuple we draw an edge
to the each item not present in the tuple. (This is an impor-
tant point, we consider that the items not present in the tuple
have strong influences to the frequent patterns.) If there is
a node in the tuple column not having an input, then it is
deleted (in Fig. 5, Part (a), this is indicated by the dotted
line form All to 12345). All gets weight 1, and the weight
propagation is then done mutatis mutandis as in the original
DWA algorithm. So, in our example, each solid edge from
All to a tuple gets weight 1/4. Node 235 has two inputs,

thus each edge to an input now receives weight 1/8 and so
on. Item 4 has the highest weight, thus 4 goes to the top of
the variable ordering.

Now, we continue as above. All edges to a son of node
4 are deleted and the process is repeated (see Part (b) in
Fig. 5). Iterating this method results in a variable ordering
only depending on the structure of the database.

4. Experimental Results

In our experiments we used Pentium4 CPU, SUSE Linux
9.3 as OS, and 512Mbyte main memory. The maximal value
of ZBDD nodes is 10 millions. Our first experiment uses a
mathematical example, while the remaining ones are per-
formed by using practical benchmark examples. For show-
ing the influence of variable orderings, we used four order-
ings, i.e., the ordering obtained by the DWA method for
ZBDDs, the “More Frequency Upper Ordering,” the “Less
Frequency Upper Ordering,” and the “Late Appearance Up-
per Ordering” already described. So, we have to describe
the remaining two orderings. The “More Frequency Upper
Ordering” is obtained by ordering the items with respect
to their frequency of appearance. In this method more fre-
quent items are located at higher order. “Less Frequency
Upper Ordering” is just the opposite.



4.1. Results for Mathematical Database Examples

First, we consider a mathematical benchmark example.
Given are 2n items a1, ..., a, and by, ..., b,. The database
is constructed by putting in row ¢ the tuple consisting of all
items except a; and b; (see below).

a2 a3 G4 - Qan by bz by --- by,
ay a3 as --- ap, by by by -+ by
ap a2 G4 - an, by by by - by,
ay az as Gp—1 b1 by b3 -+ by

The variable orderings obtained for the DWA method
and “Less Frequency Upper Ordering” are as follows.

the DWA method: as by a3 bz a4 by --- a, b, a1 by

Less Frequency Upper Ordering:
a2 a3 agq -+ ap ba b3 by -+ by ar by

Note that the “More Frequency Upper Ordering” and
“Late Appearance Upper Ordering” gave almost the same
variable ordering than “Less Frequency Upper Ordering.”
The results obtained are displayed in Table 1 in dependence
on the ordering and the number n. As we see, the variable
ordering greatly affects the size of the resulting ZBDDs.
Using the ordering obtained by the DWA method, the size
of the ZBDDs grows proportionally to the number of items.
On the hand, the size of the ZBDDs grows exponentially if
the “Less Frequency Upper Ordering” is used. For an intu-
itive explanation, note that the DWA method returns an or-
dering such that the weight of the items is shared to closely
related items. This shows that the local computability prop-
erty is very essential for this database. Because the all items
included in this database have the same frequency, also the
other two ordering methods based on frequency give expo-
nentially growing ZBDD size.

4.2. Results for Practical Benchmark Examples

Next, we provide experimental results for the effect
of variable ordering using the DWA method on practical
benchmark examples. For these experiments, we wrote a
VSOP script for constructing the tuple histograms using the
DWA method, and we picked up the frequent patterns from
this script using the ZBDD-growth method. Furthermore,
we counted the number of nodes of the generated ZBDDs.
The results are displayed in Table 2. In this table, the num-
ber in ”’()” next to the name of the database is the threshold
to represent the minimum frequency of patterns. Therefore,
only the patterns having at least this threshold frequency are
picked up.

Table 1. The Computation Time of VSOP Cal-
culator for Mathematical Benchmark Exam-
ples

the DWA Method | Less Freq. Upper Order.
n|size time(s) size | time(s)
2| 5 <0.1 5| <0.1
3] 10 <0.1 12| <0.1
41 15 <0.1 25| <0.1
5| 20 <0.1 501 <0.1
6| 25 <0.1 99| <0.1
7| 30 <0.1 196| <0.1
8| 35 <0.1 389 <0.1
9| 40 <0.1 774 <0.1
10| 45 <0.1 1,543 <0.1
12| 55 <0.1 6,153| <O0.1
14| 65 <0.1 24,587 <0.1
16| 75 <0.1 98,317 <0.1
18| 85 <0.1 393,231| 0.456
20| 95 <0.1 1,572,881 1.954
221105 <0.1 6,291,475 8.482
241115 <0.1| Memory overflow

As our results show, the reduction effect obtained by us-
ing the variable ordering obtained by the DWA method is
similar to the one obtained by using the ordering obtained
via the “Less Frequency Upper Ordering” method. For the
BMS-WebView-1 data set, the DWA method gave a better
result than all other methods. In particular, the reduction is
impressive when compared to the “More Frequency Upper
Ordering” method.

Table 3 shows the computation time needed by the DWA
method.

4.3. Discussion

As our experiments show, the variable ordering greatly
affects the resulting ZBDD size. For the practical bench-
mark examples, the DWA method provided a better vari-
able ordering than the “More Frequency Upper Order-
ing” method and the “Late Appearance Upper Ordering”
method. However, there is hardly any difference between
the DWA method and the “Less Frequency Upper Ordering”
method. While the local computability property greatly in-
fluenced the ZBDD size for the mathematical benchmark
examples, it has almost no effect for the practical bench-



Table 2. the Effect of the DWA Method for Transaction Database
the DWA Method | More Freq. Upper Order. | Less Freq. Upper Order. | Late Appear. Upper Order.
size | time(s) size time(s) size time(s) size time(s)
chess (2,000) 1,422 5.8s| 3,856 2,036.6s| 1415 5.8s| 2,778 64.8s
mushroom (1) 16,403 1.0s 448,734 1.9s| 15,131 1.0s| 40,557 1.1s
connect (60,000) 348| 27.5s| 1,659 5,402.3s 348 27.5s 374 62.8s
BMS-WebView-1 (30) [ 106,920| 98.8s|389,181 778.2s (109,989 103.1s | 152,431 153.4s

Table 3. the Computation Time of the DWA
Method

chess 2.8sec
mushroom 17.9sec
connect 219.6sec
BMS-WebView-1 | 1,255.0sec

mark examples. This is caused by the fact that the weights
for the less frequent items are higher when using the DWA
method. Thus, the “Less Frequent Upper Ordering” method
and the DWA method gave almost similar results for the
practical benchmark examples.

When the frequency of items affects the size of ZBDDs
more than the local computability method, one should use
the method based on the frequency, since its computation
time is much lower.

Future work should focus on reducing the computation
time of the DWA method and on further experiments with
different databases.
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