Learning Concepts Incrementally With Bounded Data Mining*

JOHN CASE
Department of CIS
University of Delaware
Newark
DE 19716, USA
case@cis.udel.edu

SANJAY JAIN
Department of ISCS
National University of Singapore
Lower Kent Ridge Road
Singapore 119260, Rep. of Singapore
sanjay@iscs.nus.sg

STEFFEN LANGE
FB Mathematik und Informatik
HTWK Leipzig
Postfach 30066
04251 Leipzig, Germany
steffen@informatik.htwk-leipzig.de

THOMAS ZEUGMANN
Department of Informatics
Kyushu University
Fukuoka 812-81, Japan
thomas@i.kyushu-u.ac.jp

Abstract

Important refinements of incremental concept learning
from positive data considerably restricting the acces-
sibility of input data are studied. Let ¢ be any con-
cept; every infinite sequence of elements exhausting ¢
is called positive presentation of c¢. In all learning mod-
els considered the learning machine computes a se-
quence of hypotheses about the target concept from a
positive presentation of it. With iterative learning, the
learning machine, in making a conjecture, has access
only to its previous conjecture and the latest datum
coming in. In k-bounded erxample-memory inference
(k is a priori fixed) the learner is allowed to access,
in making a conjecture, only its previous hypothesis,
its memory of up to k data items it has already seen,
and the latest datum coming in. In the case of k-
feedback identification, the learning machine, in mak-
ing a conjecture, has access only to its previous con-
jecture, the latest datum coming in, and, on the basis
of this information, it can compute k items and query
the database of previous data to find out, for each of
the k items, whether or not it is in the database (k
is again a priori fixed). In all cases, the sequence of
conjectures has to converge to a hypothesis correctly
describing the target concept.

Our results are manyfold. An infinite hierarchy of
successively more powerful feedback learners in de-
pendence on the number &k of queries allowed to be
asked is established. However, the hierarchy collapses
to 1-feedback inference if only indexed families of infi-
nite concepts are considered, and, moreover, its learn-
ing power is then equal to unrestricted incremental
learning; however, the hierarchy remains infinite for
concept classes of only infinite r.e. concepts. Both
k-feedback inference and k-bounded example-memory
identification are more powerful than iterative learn-

*An expansion of the present paper, with all proofs in-
cluded, appears as a technical report (cf. Case et al. (1997)).

ing but, surprisingly, incomparable to one another.
Furthermore, there are cases where redundancy in the
hypothesis space is shown to be a resource increasing
the learning power of iterative learners. Finally, of the
important class of unions up to k pattern languages is
shown to be teratively inferable.

1. Introduction

The present paper derives its motivation to a certain
extent from the rapidly emerging field of knowledge
discovery in databases (abbr. KDD). Historically, there
is a variety of names including data mining, knowl-
edge extraction, information discovery, data pattern
processing, information harvesting, and data archeol-
ogy all referring to finding useful information that has
not been known before about the data. Throughout
this paper we shall use the term KDD for the over-
all process of discovering useful knowledge from data
and data mining to refer to the particular subprocess
of applying specific algorithms for learning something
useful from the data. Thus, the additional steps
such as data presentation, data selection, incorporat-
ing prior knowledge, and defining the semantics of the
results obtained belong to KDD (cf., e.g., Fayyad et
al. (1996b)). Prominent examples of KDD applications
in health care and finance include Matheus et al. (1996)
and Kloesgen (1995). The importance of KDD re-
search finds its explanation in the fact that the data
collected in various fields such as biology, finance, re-
tail, astronomy, medicine are extremely rapidly grow-
ing, while our ability to analyze those data has not
kept up proportionally.

KDD mainly combines techniques originating from
machine learning, knowledge acquisition and knowl-
edge representation, artificial intelligence, pattern



recognition, statistics, data visualization, and data-
bases to automatically extract new interrelations,
knowledge, patterns and the like from huge collections
of data. Usually, the data are available from massive
data sets collected, for example, by scientific instru-
ments (cf., e.g., Fayyad et al. (1996a)), by scientists
all over the world (as in the human genome project),
or in databases that have been built for other purposes
than a current purpose.

We shall be mainly concerned with the extraction of
concepts in the data mining process. Thereby, we em-
phasize the aspect of working with huge data sets. For
example, in Fayyad et al. (1996a) the SKICAT-system
is described which operates on 3 terabytes of image
data originating from approximately 2 billion sky ob-
jects which had to be classified. If huge data sets are
around, no learning algorithm can use all the data or
even large portions of it simultaneously for computing
hypotheses about concepts represented by the data.
Different methods have been proposed for overcoming
the difficulties caused by huge data sets. For exam-
ple, sampling may be a method of choice. That is,
instead of doing the discovery process on all the data,
one starts with significantly smaller samples, finds the
regularities in it, and uses the different portions of the
overall data to verify what one has found. Clearly, a
major problem involved concerns the choice of the right
sampling size. One way proposed to solve this prob-
lem as well as other problems related to huge data sets
is interaction and iteration (cf., e.g., Brachman and
Anand (1996) and Fayyad et al. (1996b)). That is,
the whole data mining process is iterated a few times,
thereby allowing human interaction until a satisfactory
interpretation of the data is found.

Looking at data mining from the perspective de-
scribed above, it becomes a true limiting process. That
means, the actual result of the data mining algorithm
application run on a sample is tested versus (some of)
the remaining data. Then, if, for any reason what-
ever, a current hypothesis is not acceptable, the sam-
ple may be enlarged (or replaced) and the algorithm is
run again. Since the data set is extremely large, clearly
not all data can be validated in a prespecified amount
of time. Thus, from a theoretical point of view, it is
appropriate to look at the data mining process as an
ongoing, incremental one.

In the present theoretical study, then, we focus on
important refinements or restrictions of Gold’s (1967)
model of learning in the limit grammars for concepts
from positive instances.! Gold’s (1967) model itself
makes the unrealistic assumption that the learner has
access to samples of increasingly growing size. There-

'The sub-focus on learning grammars, or, equivalently,
recognizers (cf. Hopcroft and Ullman (1969)), for concepts
from positive instances nicely models the situation where
the database flags or contains ezamples of the concept to
be learned and doesn’t flag or contain the non-examples.

fore, we investigate refinements that considerably re-
strict the accessibility of input data. In particular, we
deal with so-called iterative learning, bounded ezample-
memory inference, and feedback identification (cf. Defi-
nitions 3, 4, and 5, respectively). Each of these models
formalizes a kind of incremental learning. In each of
these models we imagine a stream of positive data com-
ing in about a concept and that the data that arrived
in the past sit in a database which can get very very
large. Intuitively, with sterative learning, the learn-
ing machine, in making a conjecture, has access to its
previous conjecture and the latest data item coming
in — period. In bounded example-memory inference,
the learning machine, in making a conjecture, has ac-
cess to its previous conjecture, its memory of up to k
data items it has seen, and a new data item. Hence, a
bounded example-memory machine wanting to memo-
rize a new data item it’s just seen, if it’s already re-
membering k previous data items, must forget one of
the previous k items in its memory to make room for
the new one! In the case of feedback identification, the
learning machine, in making a conjecture, has access
to its previous conjecture, the latest data item coming
in, and, on the basis of this information, it can com-
pute k items and query the database of previous data
to find out, for each of the k items, whether or not it is
in the database. For some extremely large databases,
a query about whether an item is in there can be very
expensive, so, in such cases, feedback identification is
interesting when the bound k is small.

Of course the £ = 0 cases of bounded example-
memory inference and feedback identification are just
iterative learning.

Next we summarize informally our main results.

Theorems 2 and 3 imply that, for each k > 0, there
are concept classes of infinite r.e. languages which can
be learned by some feedback machine using no more
than k queries of the database, but no feedback ma-
chine can learn these classes if it’s restricted to no more
than k — 1 queries.? Hence, each additional, possi-
bly expensive dip into the database buys more concept
learning power. Theorem 2 is a consequence of Theo-
rem 3, and the proof of the latter is non-trivial. How-
ever, the feedback hierarchy collapses to its first level
if only indezable classes of infinite concepts are to be
learned (cf. Theorem 4).

A bounded example-memory machine can remem-
ber its choice of k items from the data, and it can
choose to forget some old items so as to remember

2That the concepts in the concept classes witnessing this
hierarchy are all infinite languages is also interesting and
for two reasons: 1. It is arguable that all natural languages
are infinite, and 2. many language learning unsolvability
results depend strongly on including the finite languages
(cf. Gold (1967), Case (1996)). Ditto for other results be-
low, namely, Theorems 6 and 7, which are witnessed by
concept classes containing only infinite concepts.



some new ones. On the other hand, at each point,
the feedback machine can query the database about its
choice of k things each being or not being in the data-
base. A bounded example-memory machine chooses
which k items to memorize as being in the database,
and the feedback machine can decide which & items to
lookup to see if they are in the database. There are
apparent similarities between these two kinds of learn-
ing machines, yet Theorems 6 and 7 show that in very
strong senses, for each of these two models, there are
concept class domains where that model is competent
and the other is not!

Theorem 8 shows that, even in fairly concrete con-
texts, with iterative learning, redundancy in the hy-
pothesis space increases learning power.

Angluin’s (1980a) pattern languages are learnable
from positive data, and they (and finite unions thereof)
have been extensively studied and applied to molecular
biology and to the learning of interesting special classes
of logic programs (see the references in Section 3.4 be-
low). Theorem 9 implies that, for each k& > 0, the
concept class consisting of all unions of at most k pat-
tern languages is learnable (from positive data) by an
iterative machine!

Because of space limitations, we have omitted most
proofs, but they can be found in Case et al. (1997).

2. Preliminaries

Unspecified notation follows Rogers (1967). In ad-
dition to or in contrast with Rogers (1967) we use
the following. By IN = {0,1,2,...} we denote the
set of all natural numbers. We set INt = IN'\ {0}.
The cardinality of a set S is denoted by |S|. Let
0, €, C, C, D, and D, denote the empty set, ele-
ment of, proper subset, subset, proper superset, and
superset, respectively. Let S7, So be any sets; then we
write S; A Sy to denote the symmetric difference of Sy
and Ss, i.e., Sy A Sy = (S1 \Sz) U (Sz \ Sl) Addition-
ally, for any sets S; and S; and a € INU {x} we write
S1 =2 Sy provided |S; A Ss| < a, where a = * means
that the symmetric difference is finite. By max S and
min S we denote the maximum and minimum of a set
S, respectively, where, by convention, max{) = 0 and
min ) = co.

By (-,-):IN x N — IN we denote Cantor’s pair-
ing function.® Moreover, we let m; and 7, denote
the corresponding projection functions over IN to the
first and second components, respectively. That is,
m1({z,y)) = = and m({(z,y)) =y for all z,y € IN.

Let ¢g, @1, 2, ... denote any fixed standard pro-
gramming system for all (and only) the partial re-
cursive functions over IN, and let @y, ®;, ®o, ... be
any associated complezity measure (cf. Blum (1967)).

3This function is easily computable, 1-1, and onto (cf.
Rogers (1967)).

Then ¢y, is the partial recursive function computed by
program k. Furthermore, let k, z € IN; if pi(z) is
defined (abbr. ¢pg(z)]) then we also say that ¢i(z)
converges; otherwise ¢y (x) diverges.

Any recursively enumerable set X' is called a learn-
ing domain. By p(X) we denote the power set of X.
Let C C p(X), and let ¢ € C; then we refer to C
and ¢ as a concept class and a concept, respectively.
Let ¢ be a concept, and let T' = zg,z1,Z2,... an in-
finite sequence of elements z; € ¢ U {#} such that
range(T) =g {xk| ox # #, k € N} = ¢c. Then T
is said to be a positive presentation or, synonymously,
a text for ¢. By text(c) we denote the set of all posi-
tive presentations for ¢. Moreover, let T be a positive
presentation, and let y be a number. Then, T, de-
notes the initial segment of 7' of length y + 1, and
T} =g {zn| xr # #, k < y}. We refer to T,f as the
content of T,. Intuitively, the #’s represent pauses
in the positive presentation of the data of a concept
c. Furthermore, let ¢ = xq,...,2,_1 be any finite se-
quence. Then we use |o| to denote the length n of
o. Additionally, let T' be a text and let 7 be a finite
sequence; then we use 0 ¢T and o ¢ 7 to denote the
sequence obtained by concatenating o onto the front
of T and T, respectively. By SEQ we denote the set of
all finite sequences of elements from X U {#}.

As a special case, we often consider the scenario
X = IN, and C = &, where £ denotes the collec-
tion of all recursively enumerable sets W;, i € IN, of
natural numbers. These sets W, can be described as
W,; = domain(p;). Thus, we also say that W; is ac-
cepted, recognized (or, equivalently, generated) by the
p-program 4. Hence, we also refer to the index ¢ of W;
as a grammar for W,.

Furthermore, we sometimes consider the scenario
that indexed families of recursive languages have to
be learned (cf. Angluin (1980b)). Let X be any finite
alphabet of symbols, and let X’ be the free monoid over
Y, ie, X =X* Asusual, werefer to subsets L C X as
to languages. A class of non-empty recursive languages
L is said to be an indexed family provided there are an
effective enumeration Ly, L1, Lo, ... of all and only the
languages in £ and a recursive function f such that for
all 7 € IN and all strings x € X we have

. 1, if xze€lL,,
f:2) = { 0, otherwise.j

Since the paper of Angluin (1980b) learning of in-
dexed families of languages has attracted much atten-
tion (cf., e.g., Zeugmann and Lange (1995)). Mainly,
this seems due to the fact that most of the established
language families such as regular languages, context-
free languages, context-sensitive languages, and pat-
tern languages are indexed families.

Essentially from Gold (1967) we define an inductive
inference machine (abbr. IIM), or simply a learning
machine, to be an algorithmic mapping from SEQ to



INU {?}. Intuitively, we interpret the output of a learn-
ing machine with respect to a suitably chosen hypoth-
esis space H. The output “?” is uniformly interpreted
as “no conjecture.” We always take as a hypothesis
space a recursively enumerable family H = (h;);en of
concepts (construed as sets or languages), where the
J in h; is thought of a numerical name for some fi-
nite description or computer program for h;. More-
over, let ¢ be a concept, let h; be a hypothesis, and let
a € INU {x}; then we write ¢ = h; iff |¢c A hj| < a.
That is, if a € IN, then h; describes c up to at most a
anomalies. The #* is used to express any finite number
of anomalies. We let M, with or without decorations,
range over learning machines.

Let T be a positive presentation, and let y € IN.
The sequence (M(T),))yen is said to converge to the
number j iff in (M (Ty))yen all but finitely many terms
are equal to j.

Now we define some models of learning. We start
with Gold’s (1967) unrestricted learning in the limit
(and some variants). Then we will present the defini-
tions of the models which more usefully restrict access
to the database.

DEFINITION 1 (Gold (1967)). Let C be a concept
class, let ¢ be a concept, let H = (h;);ew be a hypoth-
esis space, and let a € INU {x}. An I[IM M TaxtEz% -
infers c iff, for every T € text(c), there exists a j € IN
such that the sequence (M (T,))yew converges to j and
c=° hj .

M TuwtEzy,-infers C iff M TatEx, -infers c, for each
ceC.

Let TxtEzj, denote the collection of all concept
classes C for which there is an IIM M such that M
TztExf, -infers C.

TxtEx® denotes the collection of all concept classes
C for which there are an IIM M and a hypothesis space
H such that M TxtEz§ -infers C.

The a represents the number of mistakes or anom-
alies allowed in the final conjectures (cf. Case and
Smith (1983)), with a = 0 being Gold’s (1967) orig-
inal case where no mistakes are allowed. If a = 0,
we usually omit the upper index, e.g., we write TztEz
instead of TztExz®. We adopt this convention in the
definitions of the learning types below.

Since, by the definition of convergence, only finitely
many data about ¢ were seen by the IIM up to the
(unknown) point of convergence, whenever an IIM in-
fers the concept ¢, some form of learning must have
taken place. For this reason, hereinafter the terms in-
fer, learn, and identify are used interchangeably.

For TxztEzj-inference, a learner has to converge to
a single description for the target to be inferred. How-
ever, it is imaginable that humans do not converge to
a single grammar when learning their mother tongue.
Instead, we may learn a small number of equivalent
grammars each of which is easier to apply than the

others in quite different situations. This speculation
directly suggests the following definition.

DEFINITION 2 (Case and Smith (1983)). Let C be
a concept class, let ¢ be a concept, let H = (h;);en
be a hypothesis space, and let a € INU {*}. An IIM
M TxtFexy -infers c iff, for every T € text(c), there
exists a nonempty finite set D such that ¢ = h;, for
all j € D and M(T,) € D, for all but finitely many y.

M TuxtFex§ -infers C iff M TutFex$ -infers c, for
each ¢ € C.

Let TuxtFexy, denote the collection of all concept
classes C for which there is an IIM M such that M
TxtFex3,-infers C.

TxtFex® denotes the collection of all concept classes
C for which there are an IIM M and a hypothesis space
H such that M TxtFex§, -infers C.

The following theorem clarifies the relation be-
tween Gold’s (1967) classical learning in the limit and
TxtFez-inference. The assertion remains true even if
the learner is only allowed to vacillate between up to 2
descriptions, i.e., in the case |D| < 2 (cf. Case (1988;
1996)).

Theorem 1 (Osherson et al. (1986); Case (1988;
1996)). TwtExz® C TxtFex®, for all a € INU {x}.

Looking at the above definitions, we see that an ITM
M has always access to the whole history of the learn-
ing process, i.e., in order to compute its actual guess M
is fed all examples seen so far. In contrast to that, next
we define iterative IIMs and a natural generalization
of them called bounded example-memory IIMs. An it-
erative IIM is only allowed to use its last guess and the
next element in the positive presentation of the target
concept for computing its actual guess. Conception-
ally, an iterative IIM M defines a sequence (M, )nen
of machines each of which takes as its input the output
of its predecessor.

DEFINITION 3 (Wiehagen (1976)). Let C be a con-
cept class, let ¢ be a concept, let H = (hj)jew be a
hypothesis space, and let a € INU {x}. An IIM M
TatltEzy,—infers c iff for every T = (z;)jen € text(c)
the following conditions are satisfied:

(1) for all n € IN, M,(T) is defined, where My(T)
=4t M(zo) and for all n > 0: My (T) =4f
M(Mn(T)a:En-i-I):

(2) the sequence (M,(T))neN converges to a number j
such that ¢ =* h;.

Finally, M TxtItExy —infers C iff, for each ¢ € C,
M TuxtltEzy,—infers c.

The resulting learning types TztltEz%, and TztltEz®
are analogously defined as above.

In the latter definition M,,(T") denotes the (n + 1)th
hypothesis output by M when successively fed the pos-
itive presentation 7. Thus, it is justified to make the
following convention. Let ¢ = xq, ..., x, be any finite
sequence of elements over the relevant learning domain.



Moreover, let C be any concept class over X', and let M
be any IIM that iteratively learns C. Then we denote
by M, (o) the (y + 1)th hypothesis output by M when
successively fed o provided y < n, and there exists a
concept ¢ € C with ot C ¢. We adopt this convention
to the learning types defined below.

Within the following definition we consider a nat-
ural relaxation of iterative learning which we call
bounded example-memory inference.* Now, an IIM M
is allowed to memorize an a priori bounded number
of the examples it already has had access to during
the learning process. Again, M defines a sequence
(M,)new of machines each of which takes as input the
output of its predecessor. Thus, a bounded example-
memory IIM has to output a hypothesis as well as a
subset of the set of examples seen so far.

DEFINITION 4 (Lange and Zeugmann (1996)). Let
k € IN, let C be a concept class, let ¢ be a concept,
let H = (hj)jen be a hypothesis space, and let a €
IN U {*}. An IIM M TxtBem" Ezx% ~infers c iff for
every T = (z;)jew € text(c) the following conditions
are satisfied:

(1) for alln € IN, My(T) is defined, where My(T) =q5
M(z0) = {jo, So) such that Sy C T," and |So| < k,
and for allm > 0: My y1(T) =df M(Mp(T), zn41) =
(.jn+1;Sn+1) such that Sn+1 g Sn U {$n+1} and
|S‘n+1| S k:

(2) the j, in the sequence ({jn, Sn))new of M’s guesses
converges to a j € IN with ¢ =* h;.

Finally, M thBemkEa:?.Fz’nfers C iff, for each c € C,
M TxtBem"* Exg,~infers c.

For every k € IN, the resulting learning types
TxztBem" Ex§, and TutBem"Ez® are analogously de-
fined as above. Clearly, by definition, TztltExz® =
TxztBem® Ez®, for all a € IN U {x}.

Finally, we define learning by feedback IIMs. The
idea of feedback learning goes back to Wiehagen (1976)
who considered it in the setting of inductive inference
of recursive functions. Lange and Zeugmann (1996)
adapted the concept of feedback learning to inference
from positive data. Here, we generalize this definition.
Informally, a feedback IIM M is an iterative IIM that
is additionally allowed to make a bounded number of a
particular type of query. In each learning Stage n + 1,
M has access to the actual input z,,41, and its previous
guess 7,. However, M is additionally allowed to com-
pute queries from z,4; and j,. Each query concerns
the history of the learning process. Let k € IN; then
a k-feedback learner computes a k-tuple of elements
(y1,-..,yx) € X* and gets a k-tuple of “YES/NO” an-
swers such that the ith component of the answer is 1,
if y; € T,F and it’s 0, otherwise. Hence, M can just ask

4Our definition is a variant of one found in Osherson,
Stob and Weinstein (1986) and Fulk et al. (1994). Case et
al. (1997), Subsection 3.5 gives full details about the rela-
tion between both notions.

whether or not k particular strings have already been
presented in previous learning stages.

DEFINITION 5. Let k € IN, let C be a concept
class, let ¢ be a concept, let H = (hj)jew be a hy-
pothesis space, and let a € IN U {x}. Moreover, let
Qr:IN x X — X%, be a computable total mapping. An
IIM M T:cthkE':cfhfinfers c iff for every positive pre-
sentation T = (2;)jemw € text(c) the following con-
ditions are satisfied: below AR:X* — {0,1}* denotes
the answer to the queries (based on whether the corre-
sponding queried elements appear in T, or not).

(1) for all n € IN, M,(T) is defined, where My(T)
=4t M(zo) and for all n > 0: My (T) =g
M(Mn(T), AL (Qr(Mn(T), Tnt1)), Tnt1),

(2) the sequence (M, (T))new converges to a number j
such that ¢ = h; provided that A} truthfully an-
swers the questions computed by Q. (i.e. the j-th
component of A(Qr(Mn(T),xnt1)) is 1 iff the j-th
component of Qi (M, (T),xn4+1) appears in T),.)

Finally, M TztFb* Ez§,—infers C iff there is computable
mapping Qr as described above such that, for each ¢ €
C, M TutFb* Exs, —identifies c.

The resulting learning types TutFb*Ez$, and
TutFb* Ex® are defined analogously as above.

Finally, we extend Definitions 3 through 5 to the Fex
case analogously to the generalization of TztEzj, to
TxtFex$, (cf. Definition 1 and 2). The resulting learn-
ing types are denoted by TatItFer},, TrtBem" Fex§,,
and TxtFbEz%,. Moreover, for the sake of notation,
we shall use the following convention for learning ma-
chines corresponding to Definitions 3 through 5 as well
as to TatItFexs,, TxtBem" Fex?,, and TatFbEzY,. Let
7 be any finite sequence; then we let M,.(7) denote
M7y (7).

3. Results

In this section we present our results. In the next
subsection, we deal with feedback learning. Our aim
is twofold. On the one hand, we investigate the learn-
ing power of feedback inference in dependence on k,
i.e., the number of strings that may be simultane-
ously queried. On the other hand, we compare feed-
back identification with the other learning models in-
troduced, varying the error parameter too (cf. Subsec-
tion 3.2). In subsequent subsections we study iterative
learning: in Subsection 3.3, the efficacy of redundant
hypotheses for iterative learning and, in Subsection 3.4,
the iterative learning of finite unions of pattern lan-
guages.

3.1. Feedback Inference

The next theorem establishes a new infinite hierar-
chy of successively more powerful feedback learners in
dependence on the number k of database queries al-



lowed to be asked simultaneously.®

Theorem 2. TztFb*~'Ezx C TutFb*Ez, for all
ke INt.

Theorem 3 below not only provides the hierarchy
of Theorem 2, but it says that, for suitable concept
domains, the feedback learning power of k + 1 queries
of the database, where a single, correct grammar is
found in the limit, beats the feedback learning power
of k queries, even when finitely many grammars each
with finitely many anomalies are allowed in the limit.

Theorem 3. TrtFb* ™! Ex\ TutFbF Fex* # 0, for
all k € IN. Moreover this separation can be witnessed
by a class consisting of only infinite languages.

Theorem 3 above nicely contrasts with the following
result.

Theorem 4. Let L be any indexed family consisting
of only infinite languages. Then, L € TztFex implies
L € TatFb' Ex.

Hence, in the case of indexed families of infinite
languages, the hierarchy of Theorem 2 collapses for
k > 2; furthermore, again, for indexed families of infi-
nite languages, the ezpansion of Gold’s model, which
not only has unrestricted access to the database, but
which also allows finitely many correct grammars out-
put in the limit, achieves no more learning power than
feedback identification with only one query of the data-
base.

Next, we compare feedback inference and Tzt Fez®-
identification in dependence on the number of anom-
alies allowed.

Theorem 5. TrtFb’ Ex®t! \ TatFexr® # 0, for all
a € IN.

Hence, for some concept domains, the model of iter-
ative learning, where we tolerate a + 1 anomalies in the
single final grammar, is competent, but the expanded
Gold model, where we allow unlimited access to the
database and finitely many grammars in the limit each
with no more than a anomalies, is not. A little extra
anomaly tolerance nicely buys, in such cases, no need
to remember any past database history or to query it!

3.2. Feedback Inference versus Bounded Example-
Memory Learning

As promised in the introductory section, the next
two theorems show that, for each of these two mod-
els of bounded example-memory inference and feed-
back identification, there are concept class domains
where that model is competent and the other is not!

Theorem 6. TutFb'Ex \ TutBem"Fex* # 0, for

5Tt follows from Fulk et al. (1994) and Lange and Zeug-
mann (1996) that there is an infinite hierarchy of suc-
cessively more powerful bounded example-memory learn-
ers in dependence on the number k of items that can be
memorized.

all k € IN. Moreover this separation can be witnessed
by a class consisting of only infinite languages.

Theorem 6 says that, for suitable concept domains,
the feedback learning power of one query of the data-
base, where a single, correct grammar is found in
the limit, beats the bounded example-memory learn-
ing power of memorizing k database items, even when
finitely many grammars each with finitely many anom-
alies are allowed in the limit.

Theorem 7. TrtBem'Ex \ TutFb*Ex* # 0, for all
k € IN. Moreover this separation can be witnessed by
a class consisting of only infinite languages.

Theorem 7 says that, for suitable concept domains,
the bounded example-memory learning power of mem-
orizing one item from the database history beats the
feedback learning power of k queries of the data-
base, even when the final grammar is allowed to
have finitely many anomalies. It is currently open
whether TztFb* Ez* in Theorem 7 can be replaced by
Txt Fb* Fex*.

3.3. Iterative Learning

In this subsection we show that redundancy in the
hypothesis space may considerably increase the learn-
ing power of iterative learners. Interestingly, it turns
out that, redundancy may serve as a tool exploited
by the iterative learner allowing it to overgeneralize in
learning stages before convergence. Here, overgener-
alization refers to the situation in which the learner
outputs a description for a proper superset of the tar-
get concept. Furthermore, this phenomenon can be
already observed at the fairly concrete level of indexed
families.

Theorem 8. There are an indexed family £ and
a redundant hypothesis space H for it such that £ €
TatltExy \ TatltEx,

3.4. The Pattern Languages

The pattern languages (defined two paragraphs be-
low) were formally introduced by Angluin (1980a)
and have been widely investigated (cf., e.g., Salo-
maa (1994a; 1994b), and Shinohara and Arikawa
(1995) for an overview). Moreover, Angluin (1980a)
proved that the class of all pattern languages is learn-
able in the limit from positive data. Subsequently,
Nix (1983) as well as Shinohara and Arikawa (1995)
outlined interesting applications of pattern inference
algorithms. For example, pattern language learning
algorithms have been successfully applied for solving
problems in molecular biology (cf., e.g. Shimozono et
al. (1994), Shinohara and Arikawa (1995)).

Pattern languages and finite unions of pattern
languages turn out to be subclasses of Smullyan’s
(1961)) elementary formal systems (EFS). Arikawa et
al. (1992) have shown that EFS can also be treated as



a logic programming language over strings. Recently,
the techniques for learning finite unions of pattern lan-
guages have been extended to show the learnability
of various subclasses of EFS (cf. Shinohara (1991)).
From a theoretical point of view, investigations of the
learnability of subclasses of EFS are important because
they yield corresponding results about the learnabil-
ity of subclasses of logic programs. Arimura and Shi-
nohara (1994) have used the insight gained from the
learnability of EFS subclasses to show that a class of
linearly covering logic programs with local variables is
identifiable in the limit from only positive data. More
recently, using similar techniques, Krishna-Rao (1996)
has established the learnability from only positive data
of an even larger class of logic programs. These results
have consequences for Inductive Logic Programming.°

Patterns and pattern languages are defined as fol-
lows (cf. Angluin (1980a)). Let A = {0,1,...} be any
non-empty finite alphabet containing at least two ele-
ments. By A* we denote the free monoid over A (cf.
Hopcroft and Ullman (1969)). The set of all finite non-
null strings of symbols from A is denoted by A*, i.e.,
At = A*\ {€}, where ¢ denotes the empty string. By
|A| we denote the cardinality of A. Furthermore, let
X = {z;| i € IN} be an infinite set of variables such
that AN X = (). Patterns are non-empty strings over
AUX, e.g., 01, 0xglll, lxgzo0z1x2T are patterns. A
pattern 7 is in canonical form provided that if k is the
number of different variables in « then the variables
occurring in 7 are precisely zg,...,Zx—1. Moreover,
for every j with 0 < 7 < k—1, the leftmost occurrence
of z; in 7 is left to the leftmost occurrence of z;4; in
7. The examples given above are patterns in canonical
form. In the sequel we assume, without loss of gener-
ality, that all patterns are in canonical form. By Pat
we denote the set of all patterns in canonical form.

The length of a string s € A4* and of a pattern 7 is
denoted by |s| and ||, respectively. By #var(m) we
denote the number of different variables occurring in
m, and by #,,(7) we denote the number of occurrences
of variable z; in 7. If #var(w) = k, then we refer to 7
as a k-vartable pattern. Let k € IN, by Paty we denote
the set of all k-variable patterns.

Now let # € Paty, and let ug,...,up—1 € At.
Then we denote by 7[ug /g, . .., ur—1/Tk—_1] the string
s € A' obtained by substituting u; for each occur-
rence of z;, § = 0,...,k — 1, in the pattern w. The
tuple (ug,-..,ug—1) is called substitution. For every
7w € Paty, we define the language generated by pattern
by L(r) = {r[uo/zo,. .., uk—1/Tk—1]| uo,...,up—1 €
A*t}." By PAT}, we denote the set of all k-variable pat-

5We are grateful to Arun Sharma for bringing to our
fuller attention these potential applications to ILP of learn-
ing special cases of pattern languages and finite unions of
pattern languages.

"We study so-called non-erasing substitutions. It is also
possible to consider erasing substitutions where variables

tern languages. Finally, PAT = J, . PAT denotes
the set of all pattern languages over A.

Furthermore, we let () range over finite sets of pat-
terns and define L(Q) = U,¢q L(7), ie., the union
of all pattern languages generated by patterns from
Q. Moreover, we use Pat(k) and PAT(k) to denote
the family of all unions of at most k£ canonical pat-
terns and the family of all unions of at most k£ pattern
languages, respectively. That is, Pat(k) = {Q] @ C
Pat, |Q| < k} and PAT (k) = {L| (3Q € Pat(k))[L =
L(Q)]}. Finally, let L C A" be a language, and let
k € INT; we define Club(L,k) = {Q]| |Q] <k, L C
L(Q), VQ'|[Q € @ —» L € L(Q")]}. Club stands for

consistent least upper bounds.

As already mentioned above, the class PAT
is TatExpg-learnable from positive data (cf. An-
gluin (1980a)). Subsequently, Lange and Wieha-
gen (1991) showed PAT to be TxtltEx p,s-inferable.
As for unions, the first result goes back to Shino-
hara (1983) who proved the class of all unions of at
most two pattern languages to be in TztETpg(s)-
Wright (1989) extended this result to PAT(k) €
Txt Bz payry for all k > 1. Moreover, Theorem 4.2
in Shinohara and Arimura’s (1996) together with a
lemma from Blum and Blum’s (1975) shows that
Urew PAT(k) is not TxtExy-inferable for every hy-
pothesis space H. However, nothing was known pre-
vious to the present paper concerning the incremental
learnability of PAT(k). We resolve this problem by
showing the strongest possible result (Theorem 9 be-
low): each PAT(k) is iteratively learnable!

PROPOSITION 1.
(1) For all L C A%, k € IN*t, Club(L, k) is finite.
(2) If L € PAT(k), then Club(L,k) is nonempty and
contains @, such that L(Q) = L.
Proof. Part (2) is obvious. Part (1) is easy for finite
L. For infinite L, it follows from the lemma below.

LEMMA 1. Let k € INT, and let L C At be any
language. Suppose T = sg, 81, .. is a text for L. Let
L,, below denote {s;| i <n}. Then,

(1) Club(Lo,k) can be effectively obtained from so,
and Club(L,y1,k) can be effectively obtained from
Club(Ly, k) and sp41 (* note the iterative nature *).

(2) The sequence Club(Lg, k), Club(Ly,k), ... converges

to Club(L, k).

Proof. (1): Fix k > 1, and suppose T =
80,81 «+-38n;Sn+1,--- 15 & text for L. Furthermore,
let S = {{n}| so € L(m)}. We proceed induc-
tively; for n > 0, we define S}, = {Q € Sn| sn41 €
L(Q)}U{QU{r}| Q € Sp A sny1 € L(Q) A Q| <k A
Spn+1 € L(m)}, and then Sy = {Q € S), 4| (VQ' €

ne1)[Q € Q}-

may be replaced by empty strings, leading to a different
class of languages (cf. Filé (1988)).



Note that Sy can be effectively obtained from sg,
since every pattern 7 with sy € L(w) must satisfy
|| < |so|- Thus, there are only finitely many candi-
date patterns 7 with so € L(7) which can be effectively
constructed. Since membership is uniformly decidable,
we are done. Furthermore, using the same argument,
Sn+1 can be effectively obtained from S, and sp41,
too. Also it is easy to verify, by induction on n, that
Sy = Club(Ly, k). Thus, (1) is satisfied.

(2): Consider a tree 7 formed mimicking the above
construction of S,, as follows. The nodes of 7 will be
labeled either “empty” or by a pattern. The root is
labeled “empty”. The children of any node in the tree
(and their labels) are defined as follows. Suppose the
node, v, is at distance n from the root. Let () denote
the set of patterns formed by collecting the labels on
the path from root to v (ignoring the “empty” labels).
Children of v are defined as follows:

(a)If s, € L(Q), then v has only one child with label
“empty.”

(b) If s,, ¢ L(Q), and |Q| = k, then v has no chil-
dren.

(c) If s, € L(Q), and |@| < k, then v has children
with labels 7, where s,, € L(7) (the number of children
is equal to the number of patterns m such that s, €
L(m)).

Suppose U, = {Q| (Fv at a distance n + 1 from
root )[Q) = the set of patterns formed by collecting the
labels on the path from root to v (ignoring the “empty”
labels) |}. Then it is easy to verify using induction that
Sn=1Q € Un| (VQ' € Un)IQ' ¢ Q]}.

Since the number of non-empty labels on any path of
the tree is bounded by k, using Konig’s Lemma we have
that the number of nodes with non empty label must be
finite. Thus the sequence Uy, U, . .. converges. Hence
the sequence Sg = Club(Lg,k),S1 = Club(Lq,k),...
converges, to say S. Now, for all Q € S, for all n,
L, C L(Q). Thus, for all @ € S, L C L(Q). Also,
forall @ € S and Q' C @, for all but finitely many
n, Lp € L(Q"). Thus for all Q € S and Q' C @,
L ¢ L(Q'"). Tt follows that S = Club(L,k). Thus,

Part (2) of Lemma follows.

Theorem 9. PAT (k) € TxtltEx for all k > 1.

Proof. Let cn(+), be some computable bijection from
finite classes of finite sets of patterns onto IN. Let
pd be a 1-1 padding function such that, for all z,y,
Woa(z,y) = W For a finite class S of sets of patterns,
let g(S) denote a grammar obtained, effectively from
S, for Nges L(Q).

Let L € PAT(k), and let T = s, 81, ...
be a text for L. The desired IIM M is de-
fined as follows. Initially, we set My(T) =
M(so) = pd(g(Club({s0},k)), cn(Club({so},k))). Fur-
thermore, for all n > 0, we set M, 1(T) =
M(Mn(T),Sn+1) = pd(g(CZUb({50773n}7k))7

en(Club({so,---,8n},k))). Using Lemma 1 it is easy
to verify that M, 1(T) = M (M,(T), Sp+1) can be ob-
tained effectively from M,(T) and sp41. Thus, M

TutltEx-identifies PAT(k). i

4. Conclusions and Future Directions

We studied refinements of concept learning in the
limit from positive data that considerably restrict the
accessibility of input data. Our research derived its
motivation from the rapidly emerging field of data min-
ing. Here, huge data sets are a fact of life, and any
practical learning system has to deal with the high cost
of querying a huge database. Given this, a systematic
study of incremental learning is important for gain-
ing a better understanding of how different restrictions
to the accessibility of input data do affect the result-
ing inference capabilities of the corresponding learning
models. The study undertaken extends, in various di-
rections, previous work done by Osherson et al. (1986),
Fulk et al. (1994) and Lange and Zeugmann (1996).

First, the class of all unions of at most k pattern
languages has been shown to be iteratively learnable.
Moreover, we proved redundancy in the hypothesis
space to be a resource extending the learning power
of iterative learners in fairly concrete contexts. As a
matter of fact, the hypothesis space used in showing
Theorem 9 is highly redundant, too. Moreover, we
strongly conjecture this redundancy to be necessary,
i.e., no iterative learner can identify all unions of at
most k pattern languages with repsect to a 1-1 hypoth-
esis space. Clearly, once the principal learnability has
been established, complexity becomes a central issue.
Thus, further research should address the problem of
designing time efficient iterative learners for PAT (k).
This problem is even unsolved for £ = 1. On the one
hand, Lange and Wiehagen (1991) designed an iter-
ative pattern learner having polynomial update time.
Nevertheless, the expected total learning time, i.e., the
overall time needed until convergence is exponential
in the number of different variables occurring in the
target pattern for inputs drawn with respect to the
uniform distribution (cf. Zeugmann (1996)).

Second, we considerably generalized the model of
feedback inference introduced in Lange and Zeug-
mann (1996) by allowing the feedback learner to ask
k queries simultaneously. Though at first glance it
may seem that asking simultaneously for k elements
and memorizing k carefully selected data items may
be traded one to another, we rigorously proved the
resulting learning types to be advantageous in very
different scenarios (cf. Theorem 6 and 7). Conse-
quently, there is no unique way to design superior in-
cremental learning algorithms. Therefore, the compar-
ison of k-feedback learning and k-bounded example-
memory inference deserves special interest, and future
research should address the problem under what cir-
cumstances which model is preferable. Characteriza-



tions may serve as suitable tool for accomplishing this
goal (cf., e.g., Angluin (1980b), Blum and Blum (1975),
Zeugmann et al. (1995)), and Baliga et al. (1996).

Furthermore, for concept learning from extraordi-
narily large databases, by Theorems 6 and 7, in some
cases, but not in others, one can avoid the high cost of
querying the whole database by remembering a small
but judiciously chosen “cache” of database items. We
would like to find generally useful techniques (or char-
acterizations as mentioned above) for positing what
to store in inexpensive database-cache memory and/or
which minimal set of expensive queries to use.

Feedback identification and bounded example-
memory inference have been considered in the general
context of classes of recursively enumerable concepts
rather than uniformly recursives ones as done in Lange
and Zeugmann (1996). As our Theorem 4 shows, there
are subtle differences. Furthermore, a closer look at
the proof of Theorem 4 directly yields the interesting
problem whether or not allowing a learner to ask si-
multaneously k£ questions instead of querying one data
item per time may speed-up the learning process.

A further generalization can be obtained by allow-
ing a k-feedback learner to ask its queries sequentially,
i.e., the next query is additionally allowed to depend on
the answers to its previous queries. Interestingly, our
theorems hold if we use this definition for k-feedback
learning in place of the parallel queries one we actu-
ally do use. It is, however, currently open whether this
possible change in the meaning of k-feedback learning
enables learning of classes not learnable using our orig-
inal definition.

Next, we discuss possible extensions of the incremen-
tal learning model considered. A natural relaxation of
the constraint to fix & a priori can be obtained by
using the notion of constructive ordinals as done by
Freivalds and Smith (1993) for mind changes. Intu-
itively, the paramenter k is now specified to be a con-
structive ordinal, and the bounded example-memory
learner as well as a feedback machine can change their
mind of how many data items to store and to ask for,
respectively, in dependence on k. Furthermore, future
research should examine a hybrid model which permits
both memorizing a database-cache of k; items from the
database and ko queries of the database, where, again,
k1 and ks may be specified as constructive ordinals.

Moreover, it would also be interesting to extend
this and the topics of the present paper to proba-
bilistic learning machines. This branch of learning
theory has recently seen as variety of surprising re-
sults (cf., e.g., Jain and Sharma (1995), Meyer (1995;
1997)), and thus, one may expect further interesting
insight into the power of probabilism by combining it
with incremental learning.

Finally, while the research presented in the present
paper clarified what are the strength and limitations of

incremental learning, further investigations are neces-
sary dealing with the impact of incremental inference
on the complexity of the resulting learner. First results
along this line are established in Wiehagen and Zeug-
mann (1994), and we shall see what the future brings
concerning this interesting topic.
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