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Abstract. The present paper surveys some results from the inductive
inference of recursive functions, which are related to the characterization
of inferrible function classes in terms of complexity theory, and in terms
of recursive numberings. Some new results and open problems are also
included.

1 Introduction

Inductive inference of recursive functions goes back to Gold [11], who considered
learning in the limit, and has attracted a large amount of interest ever since.
In learning in the limit an inference strategy S is successively fed the graph
£(0), £(1),... of arecursive function in natural order and on every initial segment
of it, the strategy has to output a hypothesis, which is a natural number. These
numbers are interpreted as programs in a fixed Godel numbering ¢ of all partial
recursive functions over the natural numbers. The sequence of all hypotheses
output on f has then to stabilize on a number ¢ such that ¢, = f. A strategy
infers a class U of recursive functions, if it infers every function from .

One of the most influential papers has been Blum and Blum [6], who intro-
duced two types of characterizations of learnable function classes in terms of
computational complexity. The gist behind such characterizations is that classes
U of recursive functions are learnable with respect to a given learning criterion if
and only if all functions in U possess a particular complexity theoretic property.

The learning criterion considered is reliable inference on the set R, where R
denotes the set of all recursive functions. We denote the family of all classes
U which are reliably inferable by R-REL. Here reliability means the learner
converges on any function f from R iff it learns f in the limit. In the first
version, operator honesty classes are used. If O is a total effective operator
then a function f is said to be O-honest if O(f) is an upper bound for the
complexity @; for all but finitely many arguments of ¢;, where ¢; = f. Then
Blum and Blum [6] showed that a class ¢ is in R-REL iff there is a total
effective operator O such that every function f € U is ©-honest. Operator
honest characterizations are also called a priori characterizations.
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In the second version, one considers functions which possess a fastest program
modulo a general recursive operator 9 (called O -compression index). Now, the
a posteriori characterization is as follows: A class U is in R-REL iff there is
a general recursive operator © such that every function from U has an ©-
compression index.

Combining these two characterizations yields that the family of operator
honesty classes coincides with the family of the operator compressed classes.

While operator honesty characterizations have been obtained for many learn-
ing criterions (cf. [29] and the references therein), the situation concerning a
posteriori characterizations is much less satisfactory. Some results were shown
in [27], but many problems remain open. In particular, it would be quite inter-
esting to have an a posteriori characterization for T-REL . The learning criterion
T-REL is defined as R-REL, but reliability is required on the set ¥ of all total
functions. Note that T-REL C R-REL. Also, we shall present an a posteriori
characterization for the function classes which are 7 -consistently learnable with
0-delay (cf. [1] for a formal definition). Intuitively speaking, a 7 -consistent ¢-
delayed learning strategy correctly reflects all inputs seen so far except the last 0
ones, where ¢ is a natural number.

Note that there are also prominent examples of learning criterions for which
even a priori characterizations are missing. These include the behaviorally correct
learnable functions classes (cf. [9, 8] for more information). So in both cases we
also point to the open problem whether or not one can show the non-existence
of such desired characterizations.

Moreover, in Blum and Blum [6] the a posteriori characterization of R-REL
has been used to show that some interesting function classes are in R-REL,
e.g., the class of approximations of the halting problem. Stephan and Zeug-
mann [22] extended these results to several classes based on approximations
to non-recursive functions. Besides these results, our knowledge concerning the
learnability of interesting function classes is severely limited, except the recur-
sively enumerable functions classes (or subsets thereof), and with respect to
function classes used to achieve separations.

Finally, the problem of suitable hypothesis spaces is considered. That is,
instead of Go6del numberings one is interested in numberings having learner-
friendly properties. Again, we survey some illustrative results, present some new
ones, and outline open problems. Note that one can also combine the results
obtained in this setting with the results mentioned above, i.e., one can derive
some complexity theoretic properties of such numberings.

2 Preliminaries

Unspecified notations follow Rogers [21]. By N = {0,1,2,...} we denote the
set of all natural numbers. The set of all finite sequences of natural numbers is
denoted by N*. For a,b € N we define a ~ b to be a —b if a > b and 0,
otherwise.
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The cardinality of a set S is denoted by |S|. We write p(S) for the power
set of set S. Let 0, €, Cc, €, D, D, and # denote the empty set, element
of, proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By P and T we denote the set of all partial and total functions of one
variable over N, respectively. The classes of all partial recursive and recursive
functions of one, and two arguments over N are denoted by P, P2, R, and R2,
respectively. Furthermore, for any f € P we use dom(f) to denote the domain
of the function f,ie., dom(f) =g {z | = € N, f(z) is defined}. Additionally,
by range(f) we denote the range of f, i.e., range(f) =g {f(z) | z € dom(f)}.
Let f,g € B be any partial functions. We write f C g if for all € dom(f)
the condition f(z) = g(z) is satisfied. By Ro1 and R, we denote the set of
all {0,1}-valued recursive functions (recursive predicates) and of all monotone
recursive functions, respectively.

Every function ¢ € P? is said to be a numbering. Let 1 € P2, then we
write ; instead of Az.y(i,x), set Py = {¢; | i € N} and Ry = Py NR.
Consequently, if f € Py, then there is a number ¢ such that f =1;. If feP
and ¢ € N are such that ¢; = f, then 7 is called a ¥ -program for f.Let ¥ be
any numbering, and let i € N; if ¢;(z) is defined (abbr. v;(z) | ) then we also
say that ¥;(x) converges. Otherwise, 1;(z) is said to diverge (abbr. ¢;(x) 7).

A numbering ¢ € P? is called a Godel numbering (cf. Rogers [21]) if P, = P,
and for every numbering ¢ € P2, there is a ¢ € R such that 1; = Pei)
for all ¢ € N. God denotes the set of all Gédel numberings. Furthermore, we
write (p,®) to denote any complexity measure as defined in Blum [7]. That
is, ¢ € God, & € P? and (1) dom(yp;) = dom(®;) for all i € N and (2) the
predicate “®;(z) = y” is uniformly recursive for all i,z,y € N.

Moreover, let NUM = {U | Ip[tp € R? AU C Pyl} denote the family of all
subsets of all recursively enumerable classes of recursive functions.

Furthermore, using a fixed encoding (...) of N* onto N we write f™ instead
of ((f(0),...,f(n))), forany neN, feR.

The quantifier V*° stands for “almost everywhere” and means “all but finitely
many.” Finally, a sequence (j,);jen of natural numbers is said to converge to the
number j if all but finitely many numbers of it are equal to j. Next we define
some concepts of learning.

Definition 1 (Gold [11, 12]). Let U C R and let ¥ € P?>. The class U s
said to be learnable in the limit with respect to ¥ if there is a strategy S € P
such that for each function f el

(1) for all n € N, S(f™) is defined,
(2) there is a j € N such that ©; = f and the sequence (S(f"))nen con-
verges to j .

If a class U is learnable in the limit with respect to ¢ by a strategy S, then
we write U € LIMy(S). Let LIMy, = {U | U is learnable in the limit w.r.t. ¥},
and define LIM = |, cp2 LIMy, .
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As far as the semantics of the hypotheses output by a strategy S is concerned,
whenever S is defined on input f™, then we always interpret the number S(f")
as a Y -—number. This convention is adopted to all the definitions below. Further-
more, note that LIM, = LIM for any ¢ € God. In the above definition LIM
stands for “limit.”

Looking at Definition 1 one may be tempted to think that it is too general.
Maybe we should add some requirements that seem very natural. Since it may be
hard for a strategy to know which inputs may occur, it could be very convenient
to require S € R. Furthermore, if the strategy outputs a program 4 such that
©; ¢ R, then this output cannot be correct. Hence, it seems natural to require the
strategy to output exclusively hypotheses describing recursive functions. These
demands directly yield the following definition:

Definition 2 (Wiehagen [24]). Let U C R and let 1 € P*. The class U is
said to be R—totally learnable with respect to v if there is a strategy S € R
such that

(1) Ygm) €R forall n €N,
(2) for each f € U there is a j € N such that ¢; = f, and (S(f"))nen
converges to j .

R-TOTAL(S), R-TOTALy, and R-TOTAL are defined in analogy to the
above.

However, now it is not difficult to show that R-TOTAL = NUM (cf. Zeug-
mann and Zilles [29, Theorem 2]). This is the first characterization of a learning
type in terms of recursive numberings. This characterization shows how R-total
learning can be achieved, i.e., by using the well-known identification by enumer-
ation technique.

Next, we recall the definition of reliable learning introduced by Blum and
Blum [6] and Minicozzi [19]. Intuitively, a learner M is reliable provided it
converges if and only if it learns.

Definition 3 (Blum and Blum [6], Minicozzi [19]). Let U CR, M C %
and let ¢ € God. The class U is said to be reliably learnable on M if there is
a strategy S € R such that

(1) U € LIM,(S), and
(2) for all functions f € M, if the sequence (S(f™))nen converges, say to j,
then ¢j = f.

Let M-REL denote the family of all classes U that are reliably learnable on M.

Note that neither in Definition 1 nor in Definition 3 a requirement is made
concerning the intermediate hypotheses output by the strategy S. The follow-
ing definition is obtained from Definition 1 by adding the requirement that S
correctly reflects all but the last § data seen so far.
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Definition 4 (Akama and Zeugmann [1]). Let U C R, let 1 € P? and let
0 € N. The class U is called consistently learnable in the limit with §-delay
with respect to 1 if there is a strategy S € P such that

(1) U € LIMy(S),
(2) Yggny(x) = f(z) forall felU, neN and all x such that x+5 <n.

We define CONS?P(S’), CONSZ, and CONS’ analogously to the above.

We note that for 6 = 0 Barzdin’s [4] original definition of CONS is obtained.
We therefore usually omit the upper index ¢ if § = 0. This is also done for the
other version of consistent learning defined below. We use the term §-delay,
since a consistent strategy with &-delay correctly reflects all but at most the
last 0 data seen so far. If a strategy S learns a function class U in the sense of
Definition 4, then we refer to S as a 4 -delayed consistent strategy.

In Definition 4 consistency with §-delay is only demanded for inputs that
correspond to some function f from the target class /. Note that for § = 0
the following definition incorporates Wiehagen and Liepe’s [23] requirement on
a strategy to work consistently on all inputs.

Definition 5 (Akama and Zeugmann [1]). Let U C R, let 1) € P? and let
0 € N. The class U is called T —consistently learnable in the limit with J-delay
with respect to ¢ if there is a strategy S € R such that

(1) U € CONSJ,(S),
(2) Yggny(x) = f(z) forall feR, neN and all v such that x+35 <n.

We define T - CONSZ (S), T- CONSS, , and T-CONS? analogously to the above.

We note that for all § € N and all learning types LT € {CONS°, 7- CONS°}
we have LT, = LT for every ¢ € God.

Finally, we look at another mode of convergence which goes back to Feld-
man [9], who called it matching in the limit and considered it in the setting of
learning languages. The difference to the mode of convergence used in Defini-
tion 1, which is actually syntactic convergence, is to relax the requirement that
the sequence of hypotheses has to converge to a correct program, by seman-
tic convergence. Here by semantic convergence we mean that after some point
all hypotheses are correct but not necessarily identical. Nowadays, the resulting
learning model is usually referred to as behaviorally correct learning. This term
was coined by Case and Smith [8]. As far as learning of recursive functions is
concerned, behaviorally correct learning was formalized by Barzdin [2, 3].

Definition 6 (Barzdin [2, 3]). Let U C R and let 1 € P?. The class U is
said to be behaviorally correctly learnable with respect to v if there is a strategy
S € P such that for each function felU,

(1) for all n € N, S(f™) is defined,
(2) g(gny = f for all but finitely many n € N.

If U is behaviorally correctly learnable with respect to 1 by a strategy S, we
write U € BCy(S). BCy and BC are defined analogously to the above above.



On the Interplay Between Inductive Inference 129

3 Characterizations in Terms of Complexity

We continue with characterizations in terms of computational complexity. Char-
acterizations are a useful tool to get a better understanding of what different
learning types have in common and where the differences are. They may also help
to overcome difficulties that arise in the design of powerful learning algorithms.

Let us recall the needed definitions of several types of computable operators.
Let (F.)zen be the canonical enumeration of all finite functions.

Definition 7 (Rogers [21]). A mapping O: P — P from partial functions to
partial functions is called a partial recursive operator if there is a recursively
enumerable set W C N® such that for any y,z € N it holds that O(f)(y) = =z
if there is © € N such that (z,y,z) € W and f extends the finite function F .

Furthermore, O is said to be a general recursive operator if T C dom(9),
and f € % implies O(f) € ¥.

A mapping O: P — P is called an effective operator if there is a function
g € R such that O(p;) = 0y for all i € N. An effective operator O is said to
be total effective provided that R C dom(9O), and ¢; € R implies O(¢;) € R.

For more information about general recursive operators and effective opera-
tors we refer the reader to [14, 20, 28]. If O is an operator which maps functions
to functions, we write O(f,z) to denote the value of the function O(f) at the
argument x.

Definition 8. A partial recursive operator O: P — P is said to be monotone
if for all functions f,g € dom(D) the following condition is satisfied:
If vz [f(z) < g(x)] then V>*°z[O(f,z) < O(g,z)].

Let © be any arbitrarily fixed operator and let M C . Then the abbre-
viation “O(M) C M7 stands for “M C dom(9) and f € M implies that
O(f)eM”

Any computable operator can be realized by a 3-tape Turing machine T
which works as follows: If for an arbitrary function f € dom(9), all pairs
(z, f(x)), € dom(f) are written down on the input tape of T' (repetitions
are allowed), then T will write exactly all pairs (z,O(f,x)) on the output tape
of T (under unlimited working time).

Let O be a partial recursive operator, a general recursive operator or a total
effective operator. Then, for f € dom(9D), m € N we set: AD(f,m) = “the
least n such that, for all < n, f(z) is defined and, for the computation of
O(f,m), the Turing machine T only uses the pairs (z, f(z)) with = < n; if
such an n does not exist, we set AO(f, m) =00.”

For any function u € R we define (2, to be the set of all partial recursive
operators 9 satisfying AO(f,m) < u(m) for all f € dom(9D). For the sake of
notation, below we shall use id +4d, § € N, to denote the function u(z) = x + 9
for all z € N.

Blum and Blum [6] initiated the characterization of learning types in terms
of computational complexity. Here they distinguished between a priori char-
acterizations and a posteriori characterizations. In order to obtain an a priori
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characterization one starts from classes of operator honesty complezity classes,
which are defined as follows: Let O be a computable operator. Then we define

Co =ar {f | Jilpi = f AVZ2[®i(z) < O(f,z)]][} NR . (1)

That is, every function in Co possesses a program i such that the complexity
of program ¢ is in a computable way bounded by its function values, namely
by O(f,z) almost everywhere. So let LT be any learning type, e.g., learning in
the limit. Then the general form of an a priori characterization of LT looks as
follows:

Theorem 1. Let U C R be any class. Then we have U € LT if and only if
there is a computable operator O such that U C Co , where the operator O has
to fulfill some additional properties.

Ezample 1. Consider the set of all operators which can be defined as follows:
For any t € R we define O(f,x) =4 t(x) for every f € R and = € N. Then
the complexity classes defined in (1) have the form

Co = {f [ Filpi = f AVZ2[®i(z) < t(z)][J AR . (2)

and Theorem 1 yields the following a priori characterization of R-TOTAL:

Let U C R be any class. Then we have U € R-TOTAL if and only if there
s a recursive function t € R such that U C Cy.

Since this theorem holds obviously also in case that U = C;, we can directly
use the fact that R-TOTAL = NUM and conclude that C; € NUM for every
t € R. Thus, using the a priori characterization of R-TOTAL we could easily
reprove C; € NUM, which was originally shown by McCreight and Meyer [17].

Ezxample 2. Note that for every general recursive operator O there is a mono-
tone general recursive operator 9 such that O(f,z) < IM(f,x) for every func-
tion f € T and almost all z € N (cf. Meyer and Fischer [18]). Furthermore,
Grabowski [13] proved the following a priori characterization of T-REL:

Let U C R be any class. Then we have U € T-REL if and only if there exists
a general recursive operator O such that U C Cy .

Using that every function f € Ro; satisfies f(z) < 1 for all x € N we
directly see by an easy application of Meyer and Fischer’s [18] result that

T-RELNp (Ro1) = R-TOTALNp (Ro1) = NUMNp (Ro.1) ; (3)

i.e., reliable learning on the total functions restricted to classes of recursive pred-

icates is exactly as powerful as R-total learning restricted to classes of recursive

predicates. On the other hand, R-TOTAL C T-REL (cf. Grabowski [13]).
Moreover, Stephan and Zeugmann [22] showed that

NUM Ng (RO,l) C R-REL Ng (RO,l) . (4)

The latter result was already published in Grabowski [13], but the new proof
is much easier. It uses the class of approximations to the halting problem that
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has been considered in [6]. This class is defined as follows: Let (p,®) be any
complexity measure, and let 7 € R be such that for all i € N

1, ifP;(x)] and &.(x) < D;(x) ;
Ory(w) =ar § 0, if &y(x)| and =[P, (z) < Pi(2)] ;
T,  otherwise .

Now, we set B = {¢;) | i € Nand &; € Ryon}. Then in [22, Theorems 2
and 3] both results were proved B ¢ NUM and B € R-REL yielding (4). We
shall come back to this class.

Now, one can combine this with the a priori characterization of R-REL
obtained by Blum and Blum [6], which is as follows:

Let U C R be any class. Then we have U € R-REL if and only if there
exists a total effective operator O such that U C Cy .

Note that the difference between the a priori characterization of T-REL
and R-REL is that the operator O is general recursive and total effective,
respectively.

Putting this all together, we directly see that Meyer and Fischer’s [18] bound-
ability theorem cannot be strengthened by replacing “general recursive operator”
by “total effective operator.” And it also allows to show that there is an operator
honesty complexity class Co generated by a total effective operator O such that
Co Z Cg for every general recursive operator O . For an explicit construction of
such an operator O we refer the reader to [14, 28].

Furthermore, Theorem 1 can be precisely stated for LIM, CONS5, and
7T-CONS’ by using techniques from Blum and Blum [6], Wiehagen [24] and
Akama and Zeugmann [1]. The proofs can be found in [29, Theorems 37,35,34].

Let U C R, then we have Let U C R, then we have U € LIM if and only if
there exists an effective operator O such that O(U) CR and U CCo .

Let U CR and let § € N; then we have

(1) Ue CONS? if and only if there exists an effective operator O € ;445 such
that O(U) CR and U CCop .

(2) UeT- CONS? if and only if there is a general recursive operator O € Ria+s
such that U C Cy .

These a priori characterizations shed also additional light to the fact that the
learning types T-REL, R-REL, and 7- CONS? are closed under union, while
LIM and CONS® are not. In the former the operator O maps R to R, and in
the latter we only have O(U) CR.

As we have seen, operator honesty characterizations have been found for
many learning types, but some important ones are missing. These include BC,
TOTAL, and conform learning. The learning criterion TOTAL is obtained from
Definition 2 by replacing S € R by S € P and adding S(f™) € R forall f e U
and all n € N. Conform learning is a modification of consistent learning, where
the requirement to correctly reflect all the functions values seen so far is replaced
by the demand that the hypothesis output does never convergently contradict
inputs already seen (cf. [29, Definition 22]).
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Blum and Blum [6] also initiated the study of a posteriori characterizations
of learning types. In particular they showed that any class &/ € R-REL can be
characterized in a way such that there exists a general recursive operator O for
which every function from U is everywhere O -compressed.

For the sake of completeness we include here the definition of everywhere
O -compressed.

Definition 9 (Blum and Blum [6]). Let (¢, P) be a complexity measure, let
fE€R, and let O be a general recursive operator. Then a program i € N is said
to be an O -compression index of f (relative to (¢, D)) if

(2) Vilp; = f — Vo &i(z) < O(P;, max {4, j,x})] .

In this case we also say that the function f is everywhere £ -compressed.

We note that Definition 9 formalizes the concept of a fastest program (mod-
ulo an operator ) in a useful way. The O-compression index ¢ satisfies the
condition @;(z) < O(P;,x) for all but finitely many x € N and all programs j
computing the same function as program ¢ does. Additionally, it also provides
an upper bound for the least argument n such that ¢; < O(®;,z) for all z > n,
i.e., max{j,i}, and a computable majorante for those values m < n for which
possibly @;(m) > O(P;,m); i.e., the value O(P;, max {7,j}.

Of course, one can also consider the notion of everywhere £ -compressed
functions for total effective operators or any other type of computable operator 9
provided that all considered complexity functions @; are in dom(9).

Theorem 2 (Blum and Blum [6]). For every class U C R we have the
following: U € R-REL if and only if there is a general recursive operator O
such that every function from U is everywhere £ -compressed.

However, in [6] it remained open whether or not one can also reliably learn on
R an O -compression index for every function f in the target class U . We were
able to show (cf. [26]) that this is not always the case, when using the algorithm
described in [6]. Furthermore, in [27] we provided a suitable modification of
Definition 9 resulting in a reliable O -compression indez, and then showed that
such reliable 9 -compression indices are reliable learnable on R .

On the other hand, Blum and Blum [6, Section 8] used Theorem 2 to show
that several interesting functions classes are contained in R-REL including the
class B of approximations to the halting problem. Using different techniques, this
result was extend in [22]. Conversely, one can also consider any particular gen-
eral recursive operator op and ask for the resulting funcion class of everywhere
op-compressed functions, which are, via Theorem 2, known to be in R-REL.
Unfortunately, almost nothing is known in this area. Therefore, we would like
to encourage research along these two lines, i.e., considering interesting function
classes and figuring out to which learning type they belong, or to study special
general recursive operators with respect to the learning power they generate.

In order to characterize the learning type 7- CONS‘S, the following modifi-
cation of Definition 9 turned out to be suitable:
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Definition 10. Let (o, D) be a complerity measure, let f € R, and let O be
a general recursive operator. Then a program i € N is said to be an absolute
O -compression index of f (relative to (p,P)) if

(2) Vjvzlp;(y) = f(y) for ally < AD(P;, max{i,x})
= 8,() < Oy, max{i, )]

In this case we also say that the function f is absolutely O -compressed.

To show the following lemma we have to restrict the class of complexity
measures a bit. We shall say that a complexity measure (¢, ®) satisfies Property
(4) if for all ¢, € N such that ®;(x) is defined the condition @;(x) > ¢;(z) is
satisfied.

Note that Property (4) is not very restrictive, since various “natural” com-
plexity measures satisfy it.

Lemma 1. Let (¢, P) be a complexity measure satisfying Property (+), and
let § € N be arbitrarily fived. Furthermore, let U € T-CONS® . Then there is
a general recursive operator 9 € (Xq4s such that every function from U is
absolutely 9 -compressed.

The following lemma shows that the condition presented in Lemma 1 is also
sufficient. Furthermore, this lemma holds for all complexity measures.

Lemma 2. Let (¢, D) be any complexity measure, let § € N be arbitrarily fized,
let O € qys, and let U C R such that every function from U is absolutely
O -compressed. Then there is a strategy S € R such that

(1) U € T-CONSL(S),
(2) for every f € U the sequence (S(f™))nen converges to an absolute O -
compression index of f.

Furthermore, Lemmata 1 and 2 directly allow for the following theorem:

Theorem 3. Let (¢, P) be a complexity measure satisfying Property (+), let
6 € N be arbitrarily fized, and let U C R . Then we have

UeT- CONSi(S) if and only if there is an operator O € (%q4s such that
every function f from U is absolutely O -compressed. Furthermore, for every
f €U the sequence (S(f™))nen converges to an absolute O -compression index

of f.

Though we succeeded to show an a posteriori characterization for the learning
type T-CONS’ ., it is not completely satisfactory, since it restricts the class of
admissible complexity measures. Can this restriction be removed?

Nevertheless, combining the a priori characterization of 7 - CONS® with the
a posteriori characterization provided in Theorem 3 shows that the family of
operator honesty classes coincides for every § € N with the family of absolutely
operator compressed classes.

In this regard, it would be very nice to have also an a posteriori characteri-
zation of T-REL.
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4 Characterizations in Terms of Computable Numberings

The reader may be curious why our definitions of learning types include a num-
bering ¢ with respect to which we aim to learn. After all, if one can learn a class
U with respect to some numbering 1, then one can also infer U with respect
to any Godel numbering ¢ . However, ¥ may possess properties which facilitate
learning. For example, since R-TOTAL = NUM, for every class U € R-TOTAL
there is numbering 1 € R? such that & C Ry, and so the identification by
enumeration technique over v always succeeds.

Next, one may consider measurable numberings, which are defined as follows:
A numbering 1 € P? is said to be measurable if the predicate “1;(x) = y” is uni-
formly recursive in i, z,y (cf. Blum [7]). So, if ) € P? is a measurable numbering
and U C R is such that U C Py, then the identification by enumeration tech-
nique is still applicable. A prominent example is the class U = {®; | i e N}NR,
where (p,®) is a complexity measure. Note that the halting problem for the
numbering @ € P? is undecidable (cf. [25, Lemma 3]).

Blum and Blum [6] also considered P-REL and PB-REL (cf. Definition 3
for M = P and M = B, respectively) and showed that P-REL = B-REL.
Furthermore, they proved that a class Y C R is in P-REL if and only if there
is measurable numbering ¢ such that &/ C P, . Furthermore, the reliably on P
learnable function classes are characterized as the h-honesty function classes,
i.e., U C Cp, where the operator O is defined as O(f,n) = h(n, f(n)) (for a
more detailed proof see [29, Theorems 12, 27]).

Note that these results also allow for a first answer of how inductive inference
strategies discover their errors. This problem was studied in detail in Freivalds,
Kinber, and Wiehagen [10]. The results obtained clearly show the importance of
characterizations in terms of computable numberings and related techniques.

One such technique is the amalgamation technique, which is given implicitly
in Barzdin and Podnieks [5] and then formalized in Wiehagen [24]. It was also
independently discovered by Case and Smith [8], who gave it its name. Let amal
be a recursive function mapping any finite set I of v -programs to a p-program
such that for any € N, @amai(r)(z) is defined by running ¢;(z) for every i € I
in parallel and taking the first value obtained, if any.

In order to have a further example, let us take a closer look at R-REL.
Here we have the additional problem that the strategy S has to diverge on
input initially growing finite segments of any function f it cannot learn. We
are interested in learning of how this can be achieved. We need the following
notation: For every f € R and n € N we write f[n] to denote the tuple
(f(0),---, f(n)). Moreover, for any f € R, d € R, and ¢ € P? we define
Hy={i|ieN, fld(i)] C ¢;}. In [15, Theorem 44] the following was shown:

Let U C R be any function class. Then U € R-REL if and only if there is
a numbering ¢ € P? and a function d € R such that

(1) for every f € R, if Hy is finite, then Hy contains a 1 -program of the
function f, and
(2) for every f €U, the set Hy is finite.
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The proof of this theorem instructively answers where the ability to infer a
class U reliably on R may be come from. On the one hand, it comes from a well
chosen hypothesis space 9. For any function f € U there are only finitely many
“candidates” in the set H; including a 1 -program of f. So, in this case, the
amalgamation technique succeeds. On the other hand, the infinity of this set Hy
for every function which is not learned, then ensures that the strategy provided in
the proof has to diverge. This is also guaranteed by the amalgamation technique,
since the sets of “candidates” forms a proper chain of finite sets and so arbitrary
large hypotheses are output on every function f € R with H; being infinite.

There are many more characterization theorems in terms of computable num-
berings including some for LIM and BC (cf., e.g., [29, Section 8] and the refer-
ences therein), and consistent learning with ¢-delay (cf. [1, Section 3.2]).

However, there are also many open problems. For example, Kinber and Zeug-
mann [16] generalized reliable learning in the limit as defined in this paper to
reliable behaviorally correct learning and reliable frequency inference. All these
learning types share the useful properties of reliable learning such as closure un-
der recursively enumerable unions and finite invariance (cf. Minicozzi [19]). But
we are not aware of any characterization of reliable behaviorally correct learning
and reliable frequency inference in terms of computable numberings or in terms
of computational complexity.
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