Zeitschr. f. math. Logik und Grundlagen d. Math.
Bd. 30, S.169-172 (1984)

ON THE NONBOUNDABILITY OF TOTAL EFFECTIVE OPERATORS

s

by THOMAS ZEUGMANN in Berlin (G.D.R.)

Introduction

In this paper we attempt to analyze, in some more detail, the difference between
total effective operators (defined on all general recursive functions) and general re-
cursive operators (computable operators defined on all total functions). It is well-
known that not every total effective operator is general recursive; the partial recursive
operator obtained by the KrErsEL-LAcOMBE-SHOENFIELD theorem [2] does not always
map every total function to a total function. Therefore we are particularly interested
in learning, in which sense total effective and general recursive operators are extremely
different. In this content it has been known, that every general recursive operator is
bounded (cf. Definition 4) by a general recursive monotone operator; this result was
proved by MuYER and Fiscaer [3]. Hrerm [1] showed that an analogous theorem for
total effective operators cannot be obtained. Till now it has been unknown whether
this result can be stengthened or not. In response to a related question stated by
Hrrm, we will show that in general total effective operators are not boundable even
not in a very weak sense (c¢f. Theorem 1 and 2). Our theorems given below will show
that in proving theorems concerning computable operators, it does neither suffice to
consider only general recursive operators; nor to consider only monotone or quasi-
monotone operators.

We assume the reader is familar with Roarrs [4]. Now we shall give some basic
notations and definitions which will be used in this paper.

1. Basic Notations and Definitions

N = {0,1,2,...} denotes the set of all natural numbers. P and R mark the class
of all partial recursive and general recursive functions, respectively of one variable
over N. The class of all general recursive predicates over N is denoted by R, (i.e.
feRy iff feR and rg(f) = {0, 1}). An acceptable Gddel numbering of P is denoted
by @. The i-th partial recursive function is then marked by ¢;. The abbreviation a.e.
stands for “almost everywhere’ and means for all but finitely many values. We write
i.0. as an abbreviation for “infinitely often’. If © is an operator which maps func-
tions to functions, we write O(f, #) to denote the value of the function O(f) at point .

Definition 1. A mapping ©: P — P is an effective operator iff there exists an g e P
such that if ¢, e dom(D), ¢g(¢) is defined and O(p;) = @,;,. The operator O is total
effective provided that R < dom(D) and ¢, € R implies D(g;) € R.

Definition 2. An operator ©: P — P is monotone if for all functions f, g € dom(£):
if f(x) < g(x) a.e., then D(f, x) £ (g, ©) a.e.
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Definition 3. An operator : P — P is quasimonotone if for all functions
f,9 € dom(D): if f(x) < g(x) a.e., then O(f, ) < (g, @) i.o.

Definition 4. An operator O is said to be (weakly) boundable if there exists an
operator ' such that
(1) dom(D) = dom(D’),
(2) For every function fe dom(D) it holds that O(f, x) = D'(f, x) a.e. (i.0.).

2. Results

Now we will research into the following two problems:

(I) Can every total effective operator be weakly bounded by a total effective mono-
tone operator? :

(2) Is it possible to bound every total effective operator by a total effective quasi-
monotone operator?

In response to these two questions, we construct a total effective operator which
neither can be weakly bounded by any total effective monotone operator nor can be
bounded by a total effective quasimonotone operator.

At first we shall show that the first problem can be reduced to the second one.

Theorem 1. Let © be any total effective operator. Then the following holds: If the
operator O is weakly boundable by a total effective monotone operator &, then 9 can be
bounded by a quasimonotone total effective operator .

Proof. Let © be any arbitrarily fixed total effective operator. Suppose that the

total effective monotone operator ¢ weakly bounds the operator £; that means
dom(D) < dom(®) and for every function f e dom(D) it holds that

(A) O(f, x) < G(f, 2) i.o.

We define now an operator £ as follows: Oi(f, @) = max{D(f, x), &(f, x)} for all func-
tions f € P and all & € N. Then by construction £ is clearly total effective and satisties
O(f, ») = Q(f, «) for all functions f e dom (D) and all x e N. Therefore, the operator £
bounds the operator O. It remains to show that £ is a quasimonotone operator.

Let f, g be two arbitrarily fixed functions from dom() with f(z) < g(x) a.e. Since
® is a monotone operator it holds

(B) G(f, x) < G(g, x) a.e.

By (A) and by construction of the operator £ we get Quf, x) = G(f, x) i.o. and
Q(f, ) = ©(f, ) for all » and every function f € dom(2). Thus we obtain by using (B)
Qf, x) = G(f, ) < G(g, 2) < (g, #) i.0. and therefore ) is quasimonotone. []

Now we give an example of a total effective operator which cannot be bounded by
any quasimonotone operator.

Theorem 2. There exists a total effective operator O which is no boundable by any
total effective quasimonotone operator .
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Proof. Let ¢ be a fixed acceptable Gddel numbering of P and set K — {k | (k)
converges}. It is well-known that K can be effectively enumerated. Let (sl Bl B30 s
be a fixed effective enumeration of K. Define

O(f, @) = the least j such that k; > x and f(k;) = P, (k) -

By the Theorem of Ricw, {i | ¢, = f} is infinite for any function f € P and thus opera-
tor © is clearly total effective. To see that it satisfies the other requirements, we prove
the following

Lemma. Let O be the above defined operator. Then for every function h e R there is
a predicate | € Ry such that for all x, O(f, x) > h(x).

Proof. Let h be an arbitrarily fixed function from R. Define the function %’ as
follows: A'(0) = h(0) and A'(x + 1) = b'(x) + h(x + 1). By construction, ' € R and
h(z) < k() for all x. Furthermore 4’ is monotone. To define the wanted predicate f
let K* = {ky, ..., k,} and, for all , let

0, if ¢ K"® or e K¥*® and ¢ (z) + 0
M) =11, i oeE¥ and pu(@) = 0.
Clearly rg(f) < {0, 1}.
Claim 1. The predicate [ is general recursive.

Let @ be a fixed element of N. It is to show that f(x) is defined and computable.
At first compute ' (x). This is effectively possible since &’ € R. Thus K*® ig effectively
computable and finite. Therefore, it is decidable whether « € K™, In the case that
@ ¢ K", the predicate f is already defined at the point 2. Otherwise, by the defini-
tion of K it holds that ¢, (x) converges. Thus it is decidable whether @x(x) = 0 or not.
So we have f e R.

Claim 2. O(f, x) > W (x) for all x.

Since £ is a total effective operator and fe R,, we have (f) € R. Thus O(f, ») is
defined for all &. Let O(f, ) = j. It remains to show that j > h'(x). Suppose the con-
verse, i.e. § < b/'(x). By the definition of the operator O it follows that k; > « and
therefore (since A’ is monotone) § < A(k;). Thus, k; € K¥*®). By construction of the
predicate f we obtain P, (ky) = 0 iff f(k;) & 0, this is a contradiction. So we get
W(x) < j = O(f, ). To finish the proof of the lemma we use the fact that b (x) = h(x)
for all . Thus O(f, #) > h(x) for all x. To obtain the desired statement of our theorem
it suffices to fix a function r € R with »(x) > 1 for all . We set h(z) = Q(r, x), where
£ is an arbitrarily fixed total effective quasimonotone operator. Thus it holds that
the function % is general recursive, and for any predicate f € Ry we have Q(f, z) < Q(r, x)
i.o. Therefore, by our lemma, we obtain that there is a predicate f € Ry with O(f, z) >
> 0(r, ) = Q(f, ) i.0. This completes the proof. []

Corollary. Let O be the above defined operator. Then it holds: The operator £ is not
wealkly boundable by any total effective monotone operator.
Proof. Tt is an immediate consequence of Theorem 1 and 2.

Finally we want to discuss these results. First, we remark that obviously there are
infinitely many predicates such that for the above defined operator  and any total
effective quasimonotone operator £ it holds that O(f, z) > (f, ) i.0. Next, it is easy
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to show that any total effective quasimonotone operator £ does not only fail to bound

the operator O on R, it fails to do so on arbitrarily large functions. Then, we want

to point out that Theorem 2 is even true if we replace the phrase “any total effective

quasimonotone operator £ by ““any total effective quasimonotone operator O, relative

to Ry”’. (An operator £ is called quasimonotone relative to R, it there is a function » € R

queh that 7(z) = 1 for all z, and for any predicate f € R, it holds that S'E(f ®) < Or, 2)
0.) The proof is, in essential, the same.
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